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Abstract

A multipole-accelerated 3D boundary-integral algorithm capable of modelling an emulsion flow through a granular
material by direct multiparticle-multidrop simulations in a periodic box is developed and tested. The particles form a ran-
dom arrangement at high volume fraction rigidly held in space (including the case of an equilibrium packing in mechanical
contact). Deformable drops (with non-deformed diameter comparable with the particle size) squeeze between the particles
under a specified average pressure gradient. The algorithm includes recent boundary-integral desingularization tools espe-
cially important for drop–solid and drop–drop interactions, the Hebeker representation for solid particle contributions,
and unstructured surface triangulations with fixed topology. Multipole acceleration, with two levels of mesh node decom-
position (entire drop/solid surfaces and ‘‘patches”), is a significant improvement over schemes used in previous, purely
multidrop simulations; it remains efficient at very high resolutions (104–105 triangular elements per surface) and has no
lower limitation on the number of particles or drops. Such resolutions are necessary in the problem to alleviate lubrication
difficulties, especially for near-critical squeezing conditions, as well as using � 104 time steps and an iterative solution at
each step, both for contrast and matching viscosities. Examples are shown for squeezing of 25–40 drops through an array
of 9–14 solids, with the total volume fraction of 70% for particles and drops. The flow rates for the drop and continuous
phases are calculated. Extensive convergence testing with respect to program parameters (triangulation, multipole trunca-
tion, etc.) is made.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Squeezing of an emulsion of deformable drops through a granular material of solid particles is a problem of
great relevance to many industrial applications (oil filtration through underground reservoirs, flow through
fixed-bed catalytic reactors, etc.). Of particular interest are the pressure gradient-flow rate relationships for
both the continuous and drop phases, and determining the conditions when the drop squeezing effectively
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stops due to trapping in the pores by capillary forces. A phenomenological approach treating the emulsion as
a single-phase fluid with effective properties is generally insufficient, since in most interesting cases drops are
not small compared to the pore size. To describe the phenomenon from first principles, a method for rigorous,
three-dimensional, large-scale microstructural dynamical simulations must be developed instead, which is the
subject of the present paper. A granular material is modeled as a random arrangement of many solid spheres
rigidly held in a periodic box at high volume fractions (including the most physically relevant case when the
particles are mechanically supported by contact forces); the microscale Reynolds number in these applications
is typically small and inertial effects are neglected. For a single-phase Stokes flow of a Newtonian liquid
through such geometries, much work was done in the past, mostly by multipole methods. Sangani and Acrivos
[1] and Zick and Homsy [2] used expansions based on the periodic Green function to consider the flow through
periodic lattices. Ladd [3] and Mo and Sangani [4] developed multipole techniques to study the flow through
random multiparticle systems. Chapman and Higdon [5] developed a different, multipole collocation tool with
a free-space Green function to simulate an oscillatory Stokes flow through periodic lattices, including the case
of strongly overlapping spheres.

When drops are present, an intricate geometry of the pore space and drop–solid lubrication make the prob-
lem far more complex. An axisymmetrical pressure-driven creeping motion of a single drop through capillary
tubes with constriction was simulated in the past as a simplified prototype model, which captures some salient
features of the emulsion squeezing. (See [6] for a list of references.) All these simulations were based on bound-
ary-integral equations, of the first kind for tractions on solid boundaries, and could not succeed due to ill con-
ditioning for the case when the drop squeezes with high resistance, even in the axisymmetric geometry. Instead
of a boundary-integral method, Graham and Higdon [7,8] used a finite-element approach and fine adaptive
domain meshing to study drop squeezing through a tight constriction. They were able to address the near-con-
tact drop–wall interaction and estimate the critical forcing level necessary for squeezing, even with the full
Navier–Stokes equations. Their solution technique, though, takes significant advantage of the axial symmetry.

Difficulties with the boundary-integral method to simulate drop motion through a tight constriction were
addressed and largely overcome in our recent paper [6], where a 3D flow-driven single drop squeezing through
a free-space cluster of two or three particles (spherical or spheroidal) was considered; this solution, although
lacking periodic boundaries necessary for emulsion flow simulations, captures realistic granular material
microstructure on a small scale. The emphasis in [6] was on the trapping mechanism and flow conditions close
to critical. In this most challenging regime, a drop squeezes very slowly, if at all, with small drop–solid spacing,
nearly coating the solid boundaries. Using the Hebeker [9] representation for each particle contribution as a
proportional combination of single- and double-layer potentials and the reciprocal theorem for the drop inte-
rior leads to a well-posed system of Fredholm second-kind integral equations for the Hebeker density on the
solids and the fluid velocity on the drop. Divergence of simple (Picard) iterations for this system is not an
obstacle, since an alternative iterative scheme (GMRES) works well [6]. This relatively simple starting point
is crucially complemented by suitable boundary-integral desingularization tools [6], especially the novel
high-order near-singularity subtraction in the solid-to-drop double-layer contribution, to resolve lubrication
and avoid drop–solid numerical overlapping, thus allowing simulations to succeed in the near-critical range.
Still, we found it necessary to use typically a few thousand time steps for each run and NM � 5000–10,000 tri-
angular boundary elements per surface for robustness/accuracy as the critical conditions for squeezing are
approached; it is unlikely that high-order surface representation/integration rules could alleviate these
requirements.

In a parallel recent study, Zhu et al. [10] offered a different boundary-integral formalism, when drops are in
the interior of a domain V with prescribed fluid velocity on oV . They represent the velocity field as a double-
layer contribution from the container plus single-layer contributions from the drops, which also leads to a sys-
tem of second-kind integral equations. Unlike [6], though, the formulation [10] involves a hypersingular
boundary-integral over the container, which we view as a difficulty in applying this method to drop squeezing
through constrictions with significant resistance. A numerical example in [10] with a single drop squeezing
through an axisymmetrical constricted tube (modeled as 3D) is for the conditions when the drop surface is
away from the solid boundary and moves relatively easily through the throat.

Since we seek to extend the method and dynamical boundary-integral simulations [6] to large-scale multi-
drop-multiparticle problems with periodic boundaries, a standard boundary-integral coding, quadratically
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intensive in the total number of mesh-nodes, would be far too inefficient to succeed. Relevant here are previous
works [11–13] on fast summation of Stokes interactions in 3D, with an asymptotically linear complexity. San-
gani and Mo [11] developed the first hydrodynamical version of the traditional electrostatical FMM of Green-
gard and Rokhlin. Ying et al. [12] developed a kernel-independent version (applicable to Laplacian and Stokes
interactions), which retains the logical scheme of FMM but is technically simpler and only slightly slower.
Wang et al. [13] recently developed a parallel hydrodynamical version of the new FMM [14]. Of these works,
only the code of Sangani and Mo [11] implemented periodic boundaries (which is an additional burden in
terms of efficiency) and is significantly oriented on dispersed media simulations. By taking a few multipoles
per particle (and adding lubrication analytically, when necessary), they studied sedimentation, effective viscos-
ity and permeability of large random static configurations of solid spheres. Alternative approaches to include
periodic boundaries within the framework of FMM are more involved, even for Laplace interactions [15].

In the present work, though, we do not follow the line of general FMM for multipole acceleration, but
rather stick to the approach initiated in conductivity simulations by Zinchenko for 2D [16,17] and 3D
[18,19] problems and developed further by Zinchenko and Davis [20–22] for 3D hydrodynamical simulations,
all with periodic boundaries. Our scheme is logically simpler and has proven highly efficient, with little over-
heads, in practical dynamical simulations for purely multidrop systems, with several thousand time steps, sev-
eral hundred drops and moderate resolution NM � 103 in emulsion sedimentation and rheology applications
[20–22]. For the homoviscous case exploited most, when an iterative boundary-integral solution is not
required, even over 1000 drops could be dynamically simulated [22]. Unlike in FMM, the scheme [20–22] does
not rely on hierarchy of space decompositions by Cartesian grids, but uses instead natural grouping of mesh-
nodes into interfacial surfaces. Another feature is a wide use of rotation-based techniques for multipole reex-
pansions and multipoles of high-order with ‘‘economical truncation,” i.e., a broad spectrum of truncation
bounds strongly dependent on mutual geometry of deformable drops for optimized performance. Truncations
used in the algorithms [20–22] are typically based on plausible estimations of the behavior of multipole coef-
ficients for the entire surfaces, which is smooth, at least for low indices. Had we chosen Cartesian cells for
clustering the mesh-nodes, this behavior could be much less predictable, since a cell may contain fragments
from different surfaces.

Compared to our previous purely multidrop simulations [20–22], the present problem of an emulsion flow
through a granular material is literally on the next level of challenge, since it requires about 10,000 time steps
and at least NM � 104 resolution on each surface, solid particles and drops together take almost the entire
space, which further complicates simulations, and an iterative boundary-integral solution is necessary at each
time step, even for the homoviscous case. These requirements severely limit the numbers of particles and drops
that can be handled. The performance of the multipole acceleration schemes [20–22] having one level of mesh-
node decomposition degrades for resolutions NM � 104 and higher, and these schemes were not designed for a
small number of surfaces in a periodic cell, which limits their application in the present problem. On the other
hand, free-space close interactions of two drops only with superhigh resolution NM � 105 were efficiently han-
dled by a different, one level multipole acceleration scheme [23], with partitioning of each drop surface into a
large number of continuous ‘‘patches.” In the present work, we have combined the approaches [20–23] to
arrive at a new multipole acceleration scheme with two levels of mesh-node decomposition, which remains
highly efficient for NM � 104 � 105 resolutions and has no lower limitation on the number of surfaces in a peri-
odic cell. The logic of this scheme is still less complex than that of FMM. Since the present problem or mul-
tidrop dynamical simulations [20–22] have been unchallenged by other, more general fast summation
techniques, performance comparison is difficult to make; some available hydrodynamical implementations
appear inefficient, judging by the benchmarks [13]. The goal of the present work, though, was not so in bench-
marking, but in developing and testing the entire code capable of dynamical simulations for the emulsion flow
through a granular material; accordingly, many issues arise, other than fast summation of interactions.

The plan of the paper is as follows. In Section 2, the boundary-integral formulation for many deformable
drops squeezing under a constant average pressure gradient is derived, based on the periodic Green function.
The drop phase flow rate, one of the main quantities of interest from the solution, is easily expressed through
the interfacial velocity on drop surfaces. Less obvious, we also show how to reduce the calculation of the con-
tinuous phase flow rate from the solution to surface integrals. In Section 3, we discuss discretizations and
adapt the boundary-integral desingularization tools from [6] to the present multidrop-multiparticle case; of
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particular importance here are the high-order near-singularity subtraction in the solid-to-drop double-layer
contribution, and the variational technique for the double-layer contributions from drops; both are crucial
to make the present simulations work. In Section 4.1, we discuss the general logic of our new and improved
multipole-accelerated scheme for boundary-integral iterations, with a new partition of the periodic Green
function into the near- and far-field parts and two levels of mesh-node decomposition (patches and entire sur-
faces). The next several subsections contain the details of multipole operations (a reader interested in the gen-
eral structure only for the entire code can proceed to Section 5.2). Section 4.2 presents a new algorithm for
generating Lamb’s singular series for a patch, which we found to be simpler and considerably more econom-
ical than our initial scheme [20] for calculating singular moments. Moreover, the new approach leads, in a
non-trivial fashion, to an even much faster routine for the special case of a patch on a spherical surface. In
Section 4.3, we detail on merging Lamb’s singular expansions for individual patches to form an expansion
for the entire surface; this step is rotation-based and made fully optimal in the number of operations. In Sec-
tion 4.4, far-field contributions to the boundary integrals resulting from interactions between remote images in
the periodic Green function are discussed. Sections 4.5 and 4.6, complemented by Appendix A, elaborate on
calculation of additional integrals appearing in our boundary-integral formulation, and on economical
truncation of multipole expansions/reexpansions. In Section 5.1, we discuss the preiterative part of the bound-
ary-integral calculations. Mesh control (Section 5.2), to retain quality of our unstructured drop surface trian-
gulations with fixed topology in dynamical simulations, is based on passive mesh stabilization [21] combined
with occasional active node redistribution through minimization of some new form of a ‘‘potential energy”

function; relation to the mesh algorithm of Cristini et al. [24] is discussed. Section 5.3 is devoted to generating
a start-up configuration of drops with high enough volume fraction between solid particles for dynamical sim-
ulation. Relevant here is the paper of Cunha and Loewenberg [25]. They were able to simulate expansion of a
periodic (BCC) emulsion (one drop per cell, no solids) through the boundary-integral solution of Stokes equa-
tions for compressible fluids even to drop volume fractions of 0.98. They noted, however, that this procedure is
very intensive computationally. In the present work, with many drops and particles and high resolution, we
have found it even more prohibitive to reach a desired drop volume fraction through expansion in the course
of boundary-integral simulations. Instead, Section 5.3 offers a new and simple, yet artificial ‘‘swelling tech-
nique” to prepare a start-up drop arrangement. Miscellaneous features of our algorithm are discussed in Sec-
tion 5.4, including optimization for the homoviscous case and control of numerical drop–solid overlapping.

In Section 6.1, drop motion through a free-standing cluster of four spheres is simulated, to test the free-
space version of the code and demonstrate a confining effect of solid boundaries on drop deformation. Solu-
tions of Ladd [3], Mo and Sangani [4], and Chapman and Higdon [5] for a single-phase flow through random
and periodic beds of spheres provide very useful tests for our code in Section 6.2. Finally, we present in Section
6.3 examples of the most demanding long-time multiparticle-multidrop simulations for contrast and matching
viscosities, with convergence and performance analysis.

All timings below are for single-processor calculations on AMD PC, with Opteron 2.8 GHz CPU.

2. Boundary-integral formulation

Consider a three-dimensional flow of an emulsion of deformable drops through a granular material (Fig. 1).

The granular material skeleton is modelled as a random arrangement of bN solid particles with surface cen-

troids x̂c
1; . . . x̂cbN in a periodic cell ½0; LÞ3 and triply-periodic continuation into the whole space. The particles

are assumed to be rigidly held, with the no-slip boundary conditions u ¼ 0 for the triply-periodic fluid velocity

u on the particle surfaces bS 1; . . . bSbN and their images. The drop phase is formed by eN deformable surfaceseS 1; . . . eSeN with centroids ~xc
1; . . . ~xceN 2 ½0; LÞ3 and triply-periodic continuation. The drops are Newtonian, free

from surfactants, have a constant interfacial tension r and viscosity lint and are freely suspended in a New-
tonian continuous phase with viscosity le. The microscale Reynolds number is assumed small and so the
Stokes equations apply. To make the solution unique for each configuration, some integral properties must
be specified. By an analogy with drop motion through periodically constricted tubes [8], we can prescribe
either a constant flow rate for the emulsion, or a constant-pressure gradient. Our ultimate goal is to handle
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Fig. 1. Sketch for the flow of deformable drops (light shading) through a random array of fixed solid particles (dark shading) in a periodic
box ½0;LÞ3 under a pressure gradient, not to scale.
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large systems with bN , eN � 1. For such systems, the difference between the two formulations is expected to
disappear (Higdon, J.J.L., personal communication). The constant-pressure gradient formulation, though,
provides some computational advantages (Section 5.4) and was chosen in the present work. The pressure is
represented as pðxÞ ¼ hrpi � x plus a periodic function, with a given average pressure gradient hrpi. Integrat-
ing the stress vector over the boundary of the periodic cell and using the divergence theorem represents the
average pressure gradient condition in a convenient form
XbN
b¼1

cF b ¼ �hrpiV ; ð2:1Þ
where the LHS is the total hydrodynamical force acting on the solid surfaces bS 1; . . . bSbN , and V ¼ L3 is the cell
volume. Using the standard technique of energetic inequalities (e.g., [26]), it is easy to see that (2.1), indeed,
makes the problem uniquely solvable for each configuration. The equations below are made non-dimensional
using U ¼ jhrpijba2=le and L as the velocity and length scales, respectively, where ba is the characteristic radius
of solid particles; for simplicity, the average pressure gradient is along the negative x3-axis.

A system of boundary-integral equations is facilitated through the use of Hasimoto’s [27] periodic Green
functions G ðkÞðxÞðk ¼ 1; 2; 3Þ and corresponding stress tensors sðkÞðxÞ. The vectors G ðkÞðxÞ and the correspond-
ing pressures PðkÞðxÞ satisfy
r2G ðkÞðxÞ � rPðkÞðxÞ ¼ r � sðkÞðxÞ ¼
X

m

dðx�mÞek; ð2:2Þ
where the summation is over all lattice points m ¼ ðm1;m2;m3Þ with integer m1, m2, m3, and ek are basis vectors.
The additive constants in G ðkÞ are chosen so that the average of G ðkÞ over the periodic cell is zero.

Green’s theorem and no-slip conditions on bS a give, for a point y lying outside the particles and drops,
ue
kðyÞ ¼

XeN
b¼1

Z
eSb

G ðkÞðrÞ � Te
nðxÞ � uðxÞ � sðkÞðrÞ � nðxÞ

� �
dSx þ

XbN
b¼1

Z
bS b

G ðkÞðrÞ � Te
nðxÞdSx þ huki: ð2:3Þ
Here and henceforth, index e marks the values for the continuous phase, Tn ¼ T � n is the stress vector (T
being the stress tensor), n is the outward normal to a surface, and r ¼ x� y. The additive constant hui (the
average velocity over all phases, with u ¼ 0 inside bS a) stems from the integration over the cell boundary
(cf. with Eq. (2.4) of Zinchenko and Davis [20]). The flow inside the drops is excluded in a now standard
way [28] through the reciprocal theorem,
Z

eS b

G ðkÞðrÞ � T int
n ðxÞ � kuðxÞ � sðkÞðrÞ � nðxÞ

� �
dSx ¼ 0 ð2:4Þ
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and stress jump conditions at an interface, to yield
ue
kðyÞ ¼ F kðyÞ þ ðk� 1Þ

XeN
b¼1

Z
eS b

uðxÞ � sðkÞðrÞ � nðxÞdSx þ
XbN
b¼1

Z
bS b

G ðkÞðrÞ � Te
nðxÞdSx þ huki; ð2:5Þ
with
FðyÞ ¼ 2r
jhrpijba2

XeN
b¼1

Z
eS b

kðxÞnðxÞ � GðrÞdSx: ð2:6Þ
In Eqs. (2.4)–(2.6), index int relates to the drop phase, k ¼ lint=le is the viscosity ratio, the non-dimensional
group jhrpijba2=r is related to the capillary number (Section 6), kðxÞ ¼ ðk1 þ k2Þ=2 is the mean surface curva-
ture at x 2 eSb, and G ¼ ðG ð1Þ;G ð2Þ;G ð3Þ) is the symmetric second-rank Green tensor.

It is inconvenient that the kernel sðkÞðrÞ is not periodic, but contains a linearly growing part from the pres-
sure PðkÞðxÞ, so we recast (2.5) in terms of the periodic kernel (cf. [20])
�sðkÞðrÞ ¼ sðkÞðrÞ � rkI : ð2:7Þ
Note that �sðkÞ has a constant, non-zero divergence at r 6¼ m and the tensor �s ¼ �s
ðkÞ
ij

n o
is now symmetric in all three

indices. With sðkÞ replaced by �sðkÞ, Eq. (2.5) still holds, just hui is replaced by another, yet unknown additive con-
stant which can be found, in principle, when the solution is substituted into (2.1). However, for any prescribed

additive constant, the form (2.5) leads to a system of integral equations of the second-kind for u on eS a, but of

the first kind for the fractions Te
n on solids bS a. Our experience for a single drop interacting with a finite, free-space

cluster of particles [6] shows that an approach involving first kind integral equations fails to simulate 3D drop
squeezing through tight constrictions due to ill-conditioning, and it must be also avoided in the present, more
complex problem. Double-layer representation for the solid–particle contributions could not be used either, since

it is range-deficient and cannot accommodate non-zero hydrodynamical forces and torques acting on bSb.
Instead, we notice that each integral in (2.5) over bSb is a periodic Stokes flow outside bSb and its images with

a zero total flux through bSb, and it can be converted into a linear combination of a single- and double-layer
potentials:
Z

bS b

GðrÞ � Te
nðxÞdSx ¼

Z
bS b

qðxÞ � gGðrÞ þ 2�sðrÞ � nðxÞ½ �dSx; ð2:8Þ
given an arbitrary factor g > 0. Indeed, assuming temporarily that Te
nðxÞ in the LHS is given, (2.8) gives a

boundary-integral equation for qðxÞ on bSb with a unique solution (the proof is analogous to that of Hebeker
[9] for a free-space flow past a single solid body). Moreover, it follows from this equation for qðxÞ that the
total flux of qðxÞ through bSb is zero, a condition necessary for the RHS of (2.8) to be a Stokes flow, which
proves the representation (2.8). In terms of the Hebeker density qðxÞ, the force balance (2.1) takes the form
g
XbN
b¼1

Z
bSb

qðxÞdS ¼ Lba
� �2

e3: ð2:9Þ
Let the prime denote the projection of a vector field on the subspace of rigid-body motions on a surface. Intro-
ducing the fluctuations Q ¼ q� q0 (on bS a) and Q ¼ u� u0 (on eS a), the representation (2.5) can be written as
ueðyÞ ¼ u0ðyÞ þ C ; ð2:10Þ

where
u0ðyÞ ¼ FðyÞ þ ðk� 1Þ
XeN
b¼1

Z
eS b

QðxÞ � �sðrÞ � nðxÞdSx þ
XbN
b¼1

Z
bS b

QðxÞ � gGðrÞ þ 2�sðrÞ � nðxÞ½ �dSx

þ
XbN
b¼1

Z
bS b

q0ðxÞ � gGðrÞ þ 2�sðrÞ � nðxÞ½ �dSx ð2:11Þ
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and C is another additive constant. Taking the limit y! eS a (or bS a) gives the system of second-kind integral
equations for qðxÞ and uðxÞ. The spectral properties are improved (for k� 1 or k� 1, although slightly in the
present calculations) when this system is recast in terms of the ‘‘deflated” velocity [29] w ¼ u� ju0 (with
j ¼ ðk� 1Þ=ðkþ 1Þ and w� w0 ¼ u� u0), so the equations to solve for q and w take the form
qðyÞ ¼ u0ð ÞSðyÞ þ C ; y 2 bS a; ð2:12Þ

wðyÞ ¼ 2

kþ 1
u0ð ÞSðyÞ þ C

� �
þ jnðyÞeS a

Z
eS a

w � ndS; y 2 eSa;
where the subscript S denotes direct values on a surface. The constant C is expressed by substituting the first
relation (2.12) into the force balance (2.9), and so the system (2.12) can be written in the operator form
X ¼ AX þ B for X ¼ ðq;wÞ. A traditional iterative method of ‘‘successive substitutions” into the RHS is
divergent for this system, but successful solutions are obtained by minimal residual iterations (see Section
5.4 for more detail). Rigid-body projections q0;w0 are easy to calculate, e.g., q0 ¼ hqia þX� ðx� x̂c

aÞ on bS a,
where h� � � ia is the surface average over bS a, and the vector X is the solution of a 3� 3 system [30]:
Z

bS a

x� x̂c
a

� �2
I � x� x̂c

a

� �
x� x̂c

a

� �h i
dS

� 	
X ¼

Z
bS a

x� bxc
a

� �
� wdS: ð2:13Þ
The interfacial velocity is recovered as u ¼ wþ ðk� 1Þw0=2. In the limit of fine surface discretizations, results
are independent of g > 0, but in practice, values of g � ba�1 are optimal for numerical solutions, as for finite
clusters of particles [6].

The last term in (2.11) is calculated analytically, which is possible for spheres (Section 4.5) and other cano-
nic solid particle shapes (e.g., spheroids, 3D ellipsoids, etc.). This present limitation on our algorithm still pro-
vides enough generality for a granular material with globular grains, whereas particles of more complex shapes
would introduce too many parameters to make it a tractable study. We have found the splitting q ¼ q0 þQ to
be very important in the case of high solid volume fractions (typical of a packed granular material): due to low
permeability, qðxÞ takes on relatively large values, and subtracting the rigid-body component q0 (most substan-
tially, the hqi-part of it) greatly reduces the numerical error; otherwise, the convergence is poor and our
dynamical simulations could not succeed. This issue did not arise for finite clusters [6].

The main quantities of interest from the solution of (2.9) and (2.12) are the non-dimensional, instantaneous
drop phase (UD) and the continuous phase (UC) velocities, with subsequent time averaging. Calculation of UD

is simply reduced to surface integrals (cf. [6]):
UD ¼
1

cd

XeN
a¼1

Z
eV a

udV ¼ 1

cd

XeN
a¼1

Z
eS a

ðu � nÞ x� exc
a

� �
dS; ð2:14Þ
where eV a is the domain bounded by eS a, and cd is the drop volume fraction in the total space. For UC, which is
the volume average of u over the continuous phase in the periodic cell ½0; 1Þ3, the procedure is less obvious. We
note that �sðrÞ is a periodic, odd function and, hence, it has a zero mean over any periodic cell, as does GðrÞ.
Consequently, the field (2.11) u0ðyÞ, if formally continued into the whole space, has a zero mean over ½0; 1Þ3,
and, from (2.10),
UC ¼ C � 1

1� cs � cd

XeN
a¼1

Z
eV a

u0dV þ
XbN
a¼1

Z
bV a

u0dV

24 35; ð2:15Þ
where cs is the solid volume fraction in the total space, and bVa is the domain bounded by bS a. It remains to
transform (2.15) to surface integrals (cf. (2.14)) and relate the boundary values of u0 on the inner side ofeS a (or bS a) to ðu0ÞS through the jump properties of the double-layer potentials (2.11), to obtain:
UC ¼C� 1

1� cs� cd

XeN
a¼1

Z
eS a

u0ð ÞSþ
ðk�1Þ

2
Q


 �
�n

� 	
x� ~xc

a

� �
dSþ

XbN
a¼1

Z
bS a

u0ð ÞSþq
� �

�n
� 

x� bxc
a

� �
dS

8<:
9=;:

ð2:16Þ



7848 A.Z. Zinchenko, R.H. Davis / Journal of Computational Physics 227 (2008) 7841–7888
Relation (2.16) must be used as written, with ðu0ÞS taken from (2.11); we found that further analytical manip-
ulations using (2.12) can bring simpler expressions, but with poor numerical convergence.

Instead of the Hebeker form, a Power-Miranda [31] representation could be used for the solid–particle con-
tribution (2.8) as a double-layer plus additional Stokeslet and Rotlet contributions from the particle center to
complete the range. Such an approach was tested for finite clusters [6] but the Hebeker form was found to be
considerably more robust, when a drop squeezes with high resistance. We came to the same conclusion in the
present calculations.
3. Discretization and desingularization

Each drop and particle surface is represented by an unstructured mesh of flat triangles with vertices xj

(called the mesh collocation nodes). All regular integrals (e.g., (2.13)–(2.16)) and boundary integrals (after suf-
ficient desingularization) are calculated by the simplest second-order trapezoidal rule, with reassignment of
triangle contributions to vertices [32]:
Z

S
uðxÞdS 	

X
xj2S

uðxjÞMSj; ð3:1Þ
where MSj is 1/3 of the sum of flat triangle areas sharing node xj. The rule (3.1), however primitive it may
appear, is very economical and has significant advantanges in the problems with close surface interactions
(including those in [20–23] and the present problem). The solution in this case is not smooth enough and a
large number of boundary elements is needed anyway, which discourages the use of much more expensive
high-order integration schemes.

The singular and near-singular behavior of the integrands in (2.6), (2.11) at x� y 	 m stems from the free-
space contributions
G0ðnÞ ¼ �
1

8p
I

n
þ nn

n3

� �
; s0ðnÞ ¼

3

4p
nnn

n5
ð3:2Þ
to G and �s, and it has to be alleviated for successful simulations. A set of desingularization tools found most
suitable for a single drop squeezing through a finite free-space cluster [6] is used herein, but with necessary
adaptations and optimizations for a multiparticle-multidrop system, as outlined below.

3.1. Drop-to-solid and drop-to-drop contributions

Let xi
 be the mesh-node on eSb, which is closest to the periodic shift y�m of mesh-node y. Introducing the
fluctuations f ðxÞ ¼ kðxÞ � hkib on eSb, the single-layer integrals (2.6) are approximated as
Z

eS b

kðxÞnðxÞ � GðrÞdSx 	
X

xj2eS b

f xjð Þn xjð Þ � G xj � yð ÞMSj �
X

m

H1f 

X

xj2eS b

G0 xj � yþmð Þ � n xjð ÞMSj:

ð3:3Þ

Here H1 is a ‘‘barrier function,” equal to 1 for jy�m� xi
j < h0 and zero otherwise, where the threshold h0 is
normally set to 0:25ba; the undesirable effect of discontinuity in H1 is alleviated by using the fluctuations f ðxÞ
instead of kðxÞ. The value f 
 of f ðxÞ at the surface point x
S 2 eSb nearest to y�m is calculated by linear inter-
polation from the set of nodes Ai
 directly connected to xi
:
f 
 ¼ f ðxi
Þ þ
X
j2Ai


cj;i
 � ðy�m� xi
Þ f ðxjÞ � f ðxi
Þ½ �; ð3:4Þ
where cj;i ¼ ðc1;j;i; c2;j;i; c3;j;iÞ and the coefficients ck;j;i depend only on the surface geometry around xi and are
given by simple formulae (3.12) of Zinchenko and Davis [6]; f 
 is used instead of a more straightforward f ðxi
Þ
to smooth the subtracted term. For m ¼ 0 and y 2 eSb (‘‘self-interactions”), xj ¼ y is excluded from the sub-
tracted term (3.3) (see Section 4.1 for more detail). The subtracted term in (3.3) provides full desingularization,
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but disappears in the limit of fine triangulations. Owing to the barrier H1, the subtracted terms (3.3) are in
effect only for close interactions and are relatively inexpensive to calculate by the simplest, point-to-point
summations.

For the double-layer contributions from drops (2.11) (omitting the factor k� 1), a strongly singular ð� r�2Þ
behavior of the integrands is alleviated by the variational technique of Zinchenko and Davis [21]:
Z

eS b

QðxÞ � �sðrÞ � nðxÞdSx 	
X

xj2eSb

Q xjð Þ � �s xj � yð Þ � n xjð ÞMSj �
X

m

H1Q
 �
X

xj2eS b

s0 xj � yþmð Þ � n xjð ÞMSj

ð3:5Þ

(with the same barrier function H1 as in (3.3)). The quantity Q
 is required to minimize the Euclidean norm of
the free-space contribution to (3.5) from each m after subtraction, which yields, after some algebra [6,21]:
Q
 �
X

xj2eS b

s0 nj� �
� n xjð ÞMSj ¼ DT �

X
xj2eSb

nj � nðxjÞMSj

� �2
nj �QðxjÞ
� �

nj

nj
�� ��8 ; ð3:6Þ
where, for brevity, nj ¼ xj � yþm, and the matrices
D ¼ 3

4p

X
xj2eS b

nj � nðxjÞMSj

� �2
njnj

nj
�� ��8

264
375
�1 X

xj2eS b

nj � nðxjÞ
� �

MSjn
jnj

nj
�� ��5 ð3:7Þ
are precalculated (for H1 6¼ 0) before the iterations (with compact storage). In the special case of ‘‘self-inter-
actions” (m ¼ 0, y 2 eSb, H1 ¼ 1), (3.6) and (3.7) are ignored, and Q
 is set to QðyÞ, with 1

2
QðyÞ added to (3.5),

which is akin to the standard singularity subtraction in the free-space double-layer. Again, the barrier H1 con-
siderably limits the amount of work, and the corresponding operations in (3.5)–(3.7) are handled in the sim-
plest, point-to-point manner. The technique (3.6) and (3.7) greatly improves the spectral properties of the
discretized boundary-integral equations for close drop–drop and drop–solid interactions in concentrated sys-
tems at k 6¼ 1, and it is one of the most essential elements of our algorithm. With a more obvious choice
Q
 ¼ Qðxi
Þ in (3.5), iterations become nonconvergent after a short simulation time, which was observed both
for the emulsion shear flow [21] and in the present calculations, even with a moderate viscosity contrast; to
make the choice Q
 ¼ Qðxi
Þ work, much higher surface triangulations would be required. It can be noted,
however, that the technique (3.5), (3.6), and (3.7) does not completely eliminate singularity of the integrands,
only reduces it to Oðn�1Þ.

3.2. Solid–solid contribution

For each integral (2.11) with QðxÞ over bSb, when the observation point y 2 bS a, a simpler desingularization
is used, and this integral is calculated as
X

xj2bSb

Q xjð Þ � gG xj � yð Þ þ 2�s xj � yð Þ � n xjð Þ½ �MSj þ
X

m

H2Q xi
ð Þ �Pðy�m; bÞ; ð3:8Þ
where, again, xi
 is the node on bSb, which is closest to y�m, and the symmetric second-rank tensor
Pðy; bÞ ¼ �
X

xj2bS b

gG0 rjð Þ þ 2s0 rjð Þ � n xjð Þ½ �MSj þ g
Z
bS b

G0ðrÞdSx; ð3:9Þ
with rj ¼ xj � y and r ¼ x� y. The integral in (3.9) is handled analytically, which is possible for spheres (Sec-
tion 5.1) and other canonic solid shapes [6]. The barrier H2 is different from H1, namely, for all nodes y 2 bS a,
H2 ¼ 1 if the minimum node-to-node distance between bS a and the periodic image bSb þm of surface bSb shifted
by m is less than the threshold h0ð¼ 0:25baÞ, and H2 ¼ 0 otherwise. For ‘‘self-interactions” (when a ¼ b and
m ¼ 0), QðyÞ is added to (3.8) and rj ¼ 0 is excluded from the summation (3.9). Compared to H1, the barrier
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H2, as a function of y, does not have discontinuity within a chosen observation surface bS a 3 y (which we have
found important for solid–solid contributions at high concentrations), but it increases the number of opera-
tions in (3.8). However, in the present case of stationary meshes on solid particles, the elements Pðy�m; bÞ
are time-independent and calculated only once (by the simplest point-to-point summations), so the additional
term in (3.8) does not slow down dynamical simulations. The form (3.8), again, does not achieve complete
desingularization (except for a ¼ b), but was sufficient, since the solid particles have no relative motion in
the present problem, with no solid–solid lubrication.

3.3. Solid-to-drop contributions

Single-layer contributions from solids in (2.11), when y 2 eS a, are desingularized similar to (3.3), using the
value Q
 of QðxÞ at the surface point x
S 2 bSb nearest to y�m, found by interpolation (cf. (3.4)). For double-
layer contributions, however, a more elaborate approach is required, since drop–solid interactions (compared
to drop–drop) are very lubrication-sensitive. Here, we follow our recent idea of high-order near-singularity
subtraction [6] and construct a local linear approximation
Q xi
ð Þ þ
X
j2Ai


C j;i
 � x� xi
ð Þ
� �

Q xjð Þ �Q xi
ð Þ½ � ð3:10Þ
to QðxÞ near xi
 on bSb (with the same C-coefficients as in (3.4), just calculated on the solid bSb), and subtract
(3.10) from QðxÞ in the double-layer terms to fully desingularize the integrands. For solid-to-drop contribu-
tions, most affected by numerical implementation, we employ a barrier H3 analogous to H2 with additional
smoothing: for all nodes y 2 bS a, H3 ¼ 1� d2=h2

0, if the minimum distance d between eS a and bSb þm is less than
the threshold h0ð¼ 0:25baÞ, and H3 ¼ 0 otherwise; a more economical barrier H1, or its smooth analogs, were
not satisfactory for solid-to-drop contributions in the present problem. So, each integral (2.11) with QðxÞ over
a solid surface bSb, when y 2 eS a, is approximated as
X

xj2bS b

Q xjð Þ � gG xj � yð Þ þ 2�s xj � yð Þ � n xjð Þ½ �MSj

þ
X

m

H3 Q
 �Pðy�m; bÞ þ
X
j2Ai


C j;i
 � Cðy�m; bÞ � Q xjð Þ �Q xi
ð Þ½ �
( )

: ð3:11Þ
Here,
Q
 ¼ Q xi
ð Þ þ
X
j2Ai


C j;i
 � y�m� xi
ð Þ
� �

Q xjð Þ �Q xi
ð Þ½ �; ð3:12Þ
tensor P has already appeared in (3.9), and an additional third-rank, fully symmetric tensor is
Cðy;bÞ ¼ 3

2p
�
X

xj2bS b

rj � nðxjÞ½ �rjrjrj

rjj j5
MSj þ

Z
bS b

r � nðxÞ½ �rrr

rj j5
dSx

264
375: ð3:13Þ
The added-back integral in (3.13) allows for analytical treatment for spheres (Section 5.1) and other cano-
nic shapes [6]. The calculation of the subtraction tensors P and C is taken out of iterations but, when done by
the simplest point-to-point summations, would be too expensive (comparable in cost with the multipole-accel-
erated iterative solution). For this reason, we also employ multipole acceleration to calculate P and C, as
described in Section 5.1.

The paper [6] gives reasons why we have to use, in the drop squeezing problem, different desingularization
schemes for different types of interaction. In particular, high-order subtraction (3.11) could not be used for
double-layer drop contributions because of the added-back integral in (3.13). On the other hand, the varia-
tional approach (3.5)–(3.7) is not powerful enough for handling solid-to-drop contributions, and (3.11)–
(3.13) provide the only viable alternative.
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4. Multipole acceleration of iterations

4.1. General scheme

Below we discuss economical calculation of the first sums in (3.5), (3.8) and (3.11). These operations, per-
formed on each iteration, present the most computationally-extensive part, and using direct point-to-point
summations to this end would be very prohibitive for all simulations of interest. Multipole acceleration tools
developed for multidrop interactions with periodic boundaries [20–22] could be used herein. Those techniques,
however, with one level of mesh-node decomposition and multipole expansions generated for individual sur-
faces (or the compact blocks that each elongated surface is divided into, Ref. [20]) were designed to be efficient
for large systems of drops (N � 102 � 103) with moderate resolution (NM � 103 triangular boundary elements
per surface). The efficiency of acceleration goes down for much higher resolutions and/or smaller systems. In
fact, the partitioning of the Green function into the ‘‘near-field” and ‘‘far-field” parts in those algorithms
requires the system size to be not too small (roughly, N > 20� 50 at high concentrations); in particular, peri-
odic systems (N ¼ 1) cannot be handled. On the other hand, free-space close interactions of two-drops only
with superhigh resolution (NM � 105, necessary for Ca� 1) were efficiently handled by a different multi-
pole-accelerated code [23] with partitioning each drop surface into a large number of ‘‘patches.”

In the present problem of emulsion squeezing through a granular material with high resistance, high surface
resolution (at least NM � 104) is most important for successful simulations and severely limits the size (bN , eN )
of the systems that can be handled at present or in the near future. For this reason, we have combined the
techniques of [20–23] to develop a new multipole-accelerated code with two levels of mesh-node decomposi-
tion, which is efficient at high surface resolution both for large and small systems, and has no lower limitation
on the system size (bN , eN ). Besides, we have found considerable improvements to some relevant multipole tools
of [20–23], especially for the important special case of spherical solid particles, and developed some new tools,
as detailed below.

On the finest level of mesh decomposition, the collocation nodes xj on each surface are grouped into a large
number of non-overlapping sets called ‘‘patches” (Fig. 2). For each solid surface bS a, a stationary, crude aux-
iliary mesh, almost uniform with bM M � 1 triangles (and bM M=2þ 2 vertices zc 2 bS a) is first constructed, with
associated Voronoi cells around each zc; each cell is an intersection of typically six (rarely five) half-spaces. A
patch Bc simply consists of the nodes xj of the main (almost uniform) mesh on bS a, which are closer to zc than
to any other crude mesh-node on bS a. The same procedure is applied to each drop eS a in the initial configuration
when the drop is spherical, starting from a crude auxiliary mesh with eM M � 1 triangles and the initial nodes
xj 2 eS a of the main mesh, both meshes being almost uniform. The initial partitioning of drop nodes xj 2 eS a

into patches Bc is kept unchanged in the swelling process (Section 5.3) and subsequent boundary-integral sim-
ulation, although drops deform and xj move. These algorithms of grouping mesh-nodes into patches simplify
Fig. 2. Grouping of mesh-nodes (small size dots) into non-overlapping patches Bc. Lamb’s singular series about the patch centers (e.g., x0
c )

are merged into cumulative singular series about the center x0
b of the minimal shell Db around Sb. For ‘‘sufficiently separated” patches Bc0

and Bd, the Bc0 ! Bd free-space contribution is handled by singular-to-regular reexpansion. Otherwise, for node y0 2 Sb, either Lamb’s
singular series about x0

c0 , or direct summation over B0
c0 is used.



7852 A.Z. Zinchenko, R.H. Davis / Journal of Computational Physics 227 (2008) 7841–7888
that of Ref. [23] (where partitioning was done dynamically at each time step). As in that paper, it is optimal to
have 200–400 nodes xj per patch for multipole acceleration. It would be relatively easy to adapt our stationary
meshes on solids bS a to constriction regions, in which case the auxiliary mesh would also have to be non-uni-
form to keep the number of nodes per patch almost constant, for maximum efficiency of multipole accelera-
tion. We have found adaptive meshes on solids, however, to be disadvantageous in the present problem, since
they reduce the global accuracy.

A minimal spherical shell Dc with center x0
c and radius d0

c is constructed around each Bc, both for solids bS a

and (dynamically) for drops; a simple stochastic algorithm [20] provides sufficient accuracy for this operation.
Using (approximately) minimal shells is also important for the efficiency of multipole acceleration. For the
special case of spherical solids bS a, the center x0

c of the shell Dc around Bc � bS a is constrained to be on the sur-
face bS a, which increases the minimal radius d0

c only slightly but allows much faster generation of the multipole
expansion (below) for the patch Bc than by a general algorithm. Minimal spherical shells Da with centers x0

a

and radii d0
a are also constructed around each solid bS a and drop eS a (for drops, we are not using the slicing [20]

into compact blocks); Da ¼ bS a for a sphere bS a. To avoid confusion, symbols c, d are reserved for patches and
associated quantities, while a, b are used for the entire drop and solid surfaces; unless otherwise stated, Sa

stands for bS a or eS a.
The free-space contribution of each patch Bc to (3.5), (3.8) or (3.11), i.e.,
ðk� 1Þ
X
xj2Bc

Q xjð Þ � s0 xj � yð Þ � n xjð ÞMSj or
X
xj2Bc

Q xjð Þ � gG0 xj � yð Þ þ 2s0 xj � yð Þ � n xjð Þ½ �MSj; ð4:1Þ
is expanded in Lamb’s singular series:
X1
m¼1

r� Rcv
ðcÞ
�ðmþ1Þ

� �
þrUðcÞ�ðmþ1Þ �

ðm� 2ÞR2
crpðcÞ�ðmþ1Þ

2mð2m� 1Þ

"
þ
ðmþ 1ÞpðcÞ�ðmþ1ÞRc

mð2m� 1Þ

#
þrUðcÞ�1; ð4:2Þ
convergent for jRcj > d0
c , where Rc ¼ y� x0

c , and pðcÞ�ðmþ1ÞðRcÞ, UðcÞ�ðmþ1ÞðRcÞ, vðcÞ�ðmþ1ÞðRcÞ are solid spherical har-
monics of order �ðmþ 1Þ. These harmonics are generated to a sufficient order (m 6 k0, with typically
k0 ¼ 25–30) by the new algorithms of Section 4.2; these algorithms turn out to be considerably more eco-
nomical than our initial scheme (Section 3.2 of Ref. [20]) for calculating singular moments. Generation of
harmonics pðcÞ�ðmþ1Þ, UðcÞ�ðmþ1Þ, vðcÞ�ðmþ1Þ is particularly fast for a patch Bc on a spherical surface by a special
technique.

The next step is to translate the expansions (4.2) for all Bc � Sb to the center x0
b of the shell Db in order to

obtain a cumulative Lamb’s singular series
X1
m¼1

r� Rbv
ðbÞ
�ðmþ1Þ

� �
þrUðbÞ�ðmþ1Þ

h
�
ðm� 2ÞR2

brpðbÞ�ðmþ1Þ

2mð2m� 1Þ þ
ðmþ 1ÞpðbÞ�ðmþ1ÞRb

mð2m� 1Þ

#
þrUðbÞ�1 ð4:3Þ
for
ðk� 1Þ
X

xj2eS b

Q xjð Þ � s0 xj � yð Þ � n xjð ÞMSj or
X

xj2bS b

Q xjð Þ � gG0 xj � yð Þ þ 2s0 xj � yð Þ � n xjð Þ½ �MSj; ð4:4Þ
convergent for jRbj > d0
b, with Rb ¼ y� x0

b and m 6 k0. This operation (‘‘merging of singularities”), which is
absent from our algorithms [20–23], is most efficiently done through rotational transformations of spherical
harmonics and described in Section 4.3; the cost of translation for one patch Bc becomes Oðk3

0Þ.
The periodic Green function G and the corresponding stresslet �s are split into the ‘‘far-field” ðG1; s1Þ and

‘‘near-field” parts:
GðrÞ ¼
X
jmj6m0

G0ðrþmÞ þ G1ðrÞ ; �sðrÞ ¼
X
jmj6m0

s0ðrþmÞ þ s1ðrÞ; ð4:5Þ
with integer vectors m. Algorithms [20–22] employed m0 ¼ 0 suitable (and optimal) for sufficiently large sys-
tems (roughly N P Oð102Þ). In the present work, we use m0 ¼ 2 to move singularities of G1ðrÞ and s1ðrÞ much
farther away from the origin; m0 ¼ 3 would be beneficial for the smallest systems (eN , bN � 1).
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Now, to calculate the contribution of a single surface Sb to the sums (3.5), (3.8) or (3.11) for y 2 Sa, the
surface Sb is temporarily shifted by an integer vector mab to a new position Smin

b ¼ Sb þmab to minimize the

center-to-center distance x0;min
b � x0

a

��� ��� (with x0;min
b ¼ x0

b þmab) between the corresponding shells; index min

will supplement quantities related to Smin
b . Using (4.5), the contribution of Sb can be written as
X

jmj6m0

X
xj2Smin

b þm

. . .½ �0 þ
X

xj2Smin
b

. . .½ �1; ð4:6Þ
where, for brevity, ½. . . �0 is either QðxjÞ � s0ðxj � yÞ � nðxjÞMSj or QðxjÞ � ½gG0ðxj � yÞ þ 2s0ðxj � yÞ � nðxjÞ�MSj

(assuming periodic continuation for Q, n, MS); analogous for ½. . . �1, with s1, G1 instead of s0, G0. The far-field
contribution to (4.6) is efficiently calculated by a special form of Taylor double series for s1ðxj � yÞ and/or
G1ðxj � yÞ in powers of xj � x0;min

b and y� x0
a (Section 4.4); for m0 P 2, convergence is very fast, even for small

systems, and just a few terms suffice.
If the shell Dmin

b þm around Smin
b þm and shell Da do not overlap, the (free-space) contribution of Smin

b þm

to (4.6) can be evaluated at y 2 Sa by first reexpanding the singular series (4.3) (written for y� x0;min
b �m

instead of Rb) into Lamb’s regular series
X1
n¼1

r� Ravnð Þ þ rUn þ
ðnþ 3ÞR2

arpn

2ðnþ 1Þð2nþ 3Þ �
npnRa

ðnþ 1Þð2nþ 3Þ


 �
; ð4:7Þ
where Ra ¼ y� x0
a and pnðRaÞ, UnðRaÞ and vnðRaÞ are solid harmonics of order n. However, only drop images

Smin
b þm ‘‘sufficiently separated” from Sa are included in this operation, so that the shells Dmin

b þm and Da

have enough clearance for the reexpansion to converge within prescribed tolerance and threshold
ðm; n 6 k0Þ. The free-space contributions of all such images Smin

b þm to (4.6) are summed over all m and all
b, using a fast, rotation-based reexpansion algorithm (Section 3.3 of Ref. [20]). The cumulative series (4.7)
is then transformed to a more efficient form (see Eq. (3.19) of Ref. [20])
1

2
Ra

X1
n¼1

pn Rað Þ þ
X1
n¼0

hn Rað Þ; ð4:8Þ
where hnðRaÞ are solid harmonics of order n with vector coefficients, and calculated pointwise for all nodes
y 2 Sa.

Some free-space contributions in (4.6) are still not accounted for by the above scheme, in particular, ‘‘self-
interactions” (Sa ¼ Sb ¼ Smin

b and m ¼ 0). In this case, singular expansions (4.2) for all patches Bc � Sa ‘‘suf-
ficiently separated” from a given patch Bd � Sa are reexpanded into Lamb’s regular forms and summed up, to
form cumulative expansions of the type (4.7) and (4.8) for the patch Bd (with Rd ¼ y� x0

d in place of Ra) and
calculate them pointwise for all mesh-nodes y 2 Bd. If a patch Bc is not ‘‘sufficiently separated” from Bd, then
the contribution from Bc to y for y 2 Bd is calculated either by direct summation (4.1), or by Lamb’s singular
series (4.2) converted into a more efficient form (Eq. (3.21) of Ref. [20]):
1

2
Rc

X1
m¼1

p�ðmþ1ÞðRcÞ þ
X1
m¼0

h�ðmþ1Þ Rc

� �
; ð4:9Þ
where h�ðmþ1Þ are solid harmonics of order �ðmþ 1Þ. The second strategy is chosen if (i) (4.9) is more efficient
for point y and (ii) the truncation bound on m in (4.9) to reach necessary convergence does not exceed the
threshold k0. When Bd ¼ Bc, xj ¼ y is excluded from direct summation.

Finally, the last remaining free-space contributions in (4.6), namely, when Smin
b þm is different, but not

‘‘sufficiently separated” from Sa, are handled in a simpler manner (Fig. 3). Lamb’s singular series (4.3) for
the entire surface Smin

b þm, converted to the more efficient form (4.9) (with y� x0;min
b �m instead of Rc) is used

for y 2 Sa, if the truncation bound on m necessary for convergence does not exceed k0. Otherwise, we consider
the free-space contribution of Smin

b þm to (4.6) as a sum from individual patches and employ for each patch
either the multipole expansion (4.9) (only if the necessary truncation bound on m is within k0) or direct sum-
mation (4.1), depending on which is more optimal.



Fig. 3. Free-space interaction of periodic images (Sb, S 0b, S 00b, etc.) with another surface Sa. For S 0b ‘‘sufficiently separated” from Sa, the
S0b ! Sa contribution is handled by singular-to-regular center-to-center reexpansion. For node y ‘‘well outside” the shell Db around Sb,
Lamb’s singular series about the shell center is used for Sb ! y contribution. The contribution S00b ! y is handled as a sum from individual
patches, with either Lamb’s singular series or direct summation used for each patch.
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A rather general description of our multipole acceleration scheme above is complemented in the following
subsections by the details of multipole operations. In Section 5.2, we return to other, non-multipole features of
the whole algorithm.

4.2. Generation of Lamb’s singular series for a patch

To expand the patch contribution (4.1) in Lamb’s singular form (4.2), in principle, the techniques of Ref.
[20] (Section 3.2 therein) could be used based on rotational transformations of spherical harmonics. In the
present work, however, we found a simpler and considerably more economical way, without the use of rota-
tional transformations.

We start from a special form [20] of the Taylor series for a harmonic function:
f ðxÞ ¼
X1
m¼0

Xm

l¼�m

om;lf ðxÞ
�����
x¼x0

Zm;l x� x0
� �

; om;l ¼ D1 � iD2ð ÞlDm�jlj
3 ; ð4:10Þ
where Dk ¼ o=oxk is the Cartesian partial derivative, ðD1 � iD2Þl ¼ ð�1ÞlðD1 þ iD2Þ�l for l < 0, i ¼
ffiffiffiffiffiffiffi
�1
p

, and
Zm;l are related to standard spherical harmonics Y m;l:
Zm;lðrÞ ¼
2p1=2rmY m;lðrÞ

ð2mþ 1Þðm� lÞ!ðmþ lÞ!½ �1=2
;

Y m;lðrÞ ¼
ð2mþ 1Þðm� lÞ!

4pðmþ lÞ!


 �1=2

P l
m ðcos hÞeilu ðl P 0Þ;

Y m;lðrÞ ¼ ð�1Þl �Y m;�lðrÞ ðl < 0Þ ð4:11Þ
for a vector r ¼ ðr sin h cos u; r sin h sin u; r cos hÞ, P l
m is the associated Legendre function (in the definition of

[33]) and the overbar stands for complex conjugation. Relation (4.10) can be shown to be equivalent to (27) of
Sangani and Mo [11].

Let P0ðnÞ ¼ P1
0;P

2
0;P

3
0

� �
¼ 1

4pr 1
jnj be the vector of pressures for the free-space Green tensor (3.2) G0ðnÞ. An

auxiliary function
g‘kðx; yÞ ¼ Gk‘
0 ðx� yÞ � 1

2
x� x0

c

� �
k
P‘

0ðx� yÞ ð4:12Þ
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is a harmonic function of x, as well as P0ðx� yÞ, so both can be expanded in the vicinity of x ¼ x0
c using

(4.10). Substituting (4.12) for x ¼ xj into (4.1) gives the single-layer free-space contribution in the form
X
xj2Bc

Qk xjð ÞGk‘
0 xj � yð ÞMSj ¼

X1
m¼0

Xm

l¼�m

X
xj2Bc

MSjZm;l xj � x0
c

� �
Q xjð Þ

24 35 � om;lg‘ðx; yÞ

������
x¼x0

c

þ 1

2

X1
m¼0

Xm

l¼�m

X
xj2Bc

MSjZm;l xj � x0
c

� �
Q xjð Þ � xj � x0

c

� �24 35om;lP
‘
0ðx� yÞ

������
x¼x0

c

:

ð4:13Þ

Here, the differential operations are with respect to x, and g‘ ¼ g‘1; g

‘
2; g

‘
3

� �
. The pressure for the stresslet flow

sks1
0 ; sks2

0 ; sks3
0

� �
ðnÞ is �Pks

0 ðnÞ ¼ 2oPk
0ðnÞ=ons. An auxiliary function
t‘skðx; yÞ ¼ s‘sk
0 ðx� yÞ � 1

4
x� x0

c

� �
k

�P‘s
0 ðx� yÞ þ x� x0

c

� �
s

�P‘k
0 ðx� yÞ

h i
ð4:14Þ
is a harmonic function of x, so is �Pks
0 ðx� yÞ, and both can be expanded near x ¼ x0

c using (4.10). Substituting
(4.14) for x ¼ xj into (4.1) yields the double-layer contribution
X

xj2Bc

Qs xjð Þs‘sk
0 xj � yð ÞW k xjð Þ ¼

X1
m¼0

Xm

l¼�m

�EðcÞm;l;k;som;lt‘skðx; yÞ
�����
x¼x0

c

þ
X1
m¼0

Xm

l¼�m

�D
ðcÞ
m;l;kom;l

�P‘k
0 ðx; yÞ

�����
x¼x0

c

: ð4:15Þ
The patch double-layer moments are defined as
�EðcÞm;l;k;s ¼
X
xj2Bc

W ðsQkÞ xjð ÞZm;l xj � x0
c

� �
;

�D
ðcÞ
m;l;k ¼

1

4

X
xj2Bc

Zm;l xj � x0
c

� �
Qk xjð ÞW xjð Þ þ W k xjð ÞQ xjð Þ½ � � xj � x0

c

� �
; ð4:16Þ
where WðxjÞ ¼ ðk� 1ÞnðxjÞMSj on a drop and WðxjÞ ¼ 2nðxjÞMSj on a solid surface, respectively, and
W ðsQkÞ ¼ 1

2
ðW sQk þ W kQsÞ is the symmetrization in indices s and k.

The next step is to transform (4.15) to a form containing only om;lg‘ and om;lP
‘
0. Since P0ðnÞ is harmonic, the

following simple algebra applies:
om;l
�P‘1

0 ¼ omþ1;lþ1 � omþ1;l�1

� �
P‘

0; om;l
�P‘2

0 ¼ i omþ1;lþ1 þ omþ1;l�1

� �
P‘

0;

om;l
�P‘3

0 ¼ 2omþ1;lP
‘
0: ð4:17Þ
For t‘sk, we note that t‘skðx; yÞ ¼ Dsg‘kðx; yÞ þ Dkg‘sðx; yÞ, the derivatives taken with respect to x, so om;lt‘sk can be
expressed via omþ1;l0g

‘ similar to (4.17). As a result, the RHS of (4.15) takes the form
X
m

Xm

l¼�m

EðcÞm;l � om;lg‘ðx; yÞ þDðcÞm;lom;lP
‘
0ðx� yÞ

h i
x¼x0

c

; ð4:18Þ
with
EðcÞm;l ¼ EðcÞm;l;1;E
ðcÞ
m;l;2;E

ðcÞ
m;l;3

� �
;

EðcÞm;l;k ¼ �EðcÞm�1;l�1;k;1 þ i�EðcÞm�1;l�1;k;2 � �EðcÞm�1;lþ1;k;1 þ i�EðcÞm�1;lþ1;k;2 þ 2�EðcÞm�1;l;k;3;

DðcÞm;l ¼ �D
ðcÞ
m�1;l�1;1 þ i �D

ðcÞ
m�1;l�1;2 � �D

ðcÞ
m�1;lþ1;1 þ i �D

ðcÞ
m�1;lþ1;2 þ 2 �D

ðcÞ
m�1;l;3 ð4:19Þ
(assuming that �D
ðcÞ
m;l;k and �EðcÞm;l;k;s are zero for jlj > m).

For a patch on a solid surface, single- (4.13) and double-layer (4.18) contributions are now combined. The
problem is always reduced, therefore, to generating Lamb’s singular series for (4.18). Using the explicit expres-
sions for g‘ and P0, the vector form for (4.18) (‘ ¼ 1; 2; 3) can be written as
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WðyÞ ¼
X1
m¼0

Xm

l¼�m

ð�1Þm�1

8p
EðcÞm;l þ 2DðcÞm;l � EðcÞm;l � Rc

� �
ry

h i
oy

m;l

1

Rc
: ð4:20Þ
Index y denotes differential operations with respect to y ¼ x0
c þ Rc. From Maxwell’s relation [34],
oy
m;l

1

Rc
¼ ð�1Þm�l 4pðm� lÞ!ðmþ lÞ!

ð2mþ 1Þ


 �1=2 Y m;�lðRcÞ
Rmþ1

c

: ð4:21Þ
It is now easy to expand the Stokes flow WðyÞ in the form (4.2) and calculate the harmonics
pðcÞ�ðmþ1Þ Rc

� �
¼
Xm

m¼�m

AðcÞ�ðmþ1Þ;m
d0

c

Rc

 !mþ1

Y m;m Rc

� �
;

UðcÞ�ðmþ1Þ Rc

� �
¼
Xm

m¼�m

BðcÞ�ðmþ1Þ;m
d0

c

Rc

 !mþ1

Y m;m Rc

� �
;

vðcÞ�ðmþ1Þ Rc

� �
¼
Xm

m¼�m

CðcÞ�ðmþ1Þ;m
d0

c

Rc

 !mþ1

Y m;m Rc

� �
ð4:22Þ
(assuming pðcÞ�1 ¼ vðcÞ�1 ¼ 0). Indeed, from (4.21),
WðyÞ � Rc ¼
X1
m¼0

Xm

l¼�m

ð�1Þm�1

8p
ðmþ 2ÞEðcÞm;l � Rc � 2ðmþ 1ÞDðcÞm;l

h i
oy

m;l

1

Rc
: ð4:23Þ
Substituting (4.21) and standard recurrent relations
R1 þ iR2ð ÞY n;mðRÞ ¼ R f 1
n;mY mþ1

nþ1 ðRÞ þ f 2
n;mY mþ1

n�1 ðRÞ
h i

;

R1 � iR2ð ÞY n;mðRÞ ¼ R f 3
n;mY m�1

nþ1 ðRÞ þ f 4
n;mY m�1

n�1 ðRÞ
h i

;

R3Y nmðRÞ ¼ R f 5
n;mY m

nþ1ðRÞ þ f 6
n;mY m

n�1ðRÞ
h i

; ð4:24Þ
with
f 1
n;m ¼

ðnþ mþ 1Þðnþ mþ 2Þ
ð2nþ 1Þð2nþ 3Þ


 �1=2

; f 2
n;m ¼ �

ðn� m� 1Þðn� mÞ
ð2nþ 1Þð2n� 1Þ


 �1=2

;

f 3
n;m ¼ �f 1

n;�m ; f 4
n;m ¼ �f 2

n;�m;

f 5
n;m ¼

ðn� mþ 1Þðnþ mþ 1Þ
ð2nþ 1Þð2nþ 3Þ


 �1=2

; f 6
n;m ¼

ðn� mÞðnþ mÞ
ð2n� 1Þð2nþ 1Þ


 �1=2

ð4:25Þ
into (4.24) and comparing the result with the general formula [35]
WðyÞ � Rc ¼
X1
m¼0

ðmþ 1Þ
2ð2m� 1ÞR

2
cpðcÞ�ðmþ1Þ � ðmþ 1ÞUðcÞ�ðmþ1Þ


 �
ð4:26Þ
yields complex A- and B-coefficients in (4.22).
It easily follows from (4.20) that
ry �WðyÞ½ � � Rc ¼
X1
m¼1

Xm

l¼�m

ð�1Þm�1

4p
EðcÞm;l � Rc �ryo

y
m;l

1

Rc


 �
: ð4:27Þ
Substituting (4.21) and recurrent relations
R2D3 � R3D2ð Þ Y n;mðRÞ
Rnþ1

¼ � i

2Rnþ1
ðn� mÞðnþ mþ 1Þ½ �1=2Y n;mþ1ðRÞ þ ðn� mþ 1Þðnþ mÞ½ �1=2Y n;m�1ðRÞ

n o
;

R3D1 � R1D3ð Þ Y n;mðRÞ
Rnþ1

¼ 1

2Rnþ1
� ðn� mÞðnþ mþ 1Þ½ �1=2Y n;mþ1ðRÞ
n

þ ðn� mþ 1Þðnþ mÞ½ �1=2Y n;m�1ðRÞ
o
;

R1D2 � R2D1ð Þ Y n;mðRÞ
Rnþ1

¼ im

Rnþ1
Y n;mðRÞ ð4:28Þ
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into (4.27) and comparing the result with the general formula [35]
ry �WðyÞ½ � � Rc ¼
X1
m¼1

mðmþ 1ÞvðcÞ�ðmþ1Þ ð4:29Þ
finally gives complex C-coefficients in (4.22). In actual programming, we prefer to reformulate this algorithm
in terms of normalized solid harmonics ðjxj � x0

c j=d0
cÞ

mY m;lðxj � x0
cÞ instead of Zm;lðxj � x0

cÞ. This way, interme-
diate factorial operations (which could potentially overflow at very large indices m; l) are avoided. The com-
putational cost of generating (4.22) to order m ¼ k0 for one patch is Oðk2

0jBcjÞ (where jBcj is the number of
mesh-nodes xj in Bc) and comes from calculating the patch moments (4.13) and (4.16); transformation from
(4.18) to Lamb’s series (4.2) is only an Oðk2

0Þ operation. In the optimal form, the algorithm includes only
11jBcjk2

0 and 15jBcjk2
0 double precision multiplications for a patch on a drop and solid surface, respectively.

In actual tests with k0 ¼ 25, this algorithm performed, respectively, about 2.5 and 2 times faster than our ini-
tial scheme (Section 3.2 of Ref. [20]) based on rotations. Besides, the new algorithm is considerably simpler
and can be generalized for Green functions other than the free-space (3.2).

Moreover, this approach based on patch moments leads to a special, very fast scheme to generate Lamb’s
series (4.2) for a patch Bc lying on a spherical (solid) surface Sb, if the expansion center x0

c is restricted to be on
Sb. The key is the geometric identity
xj � x0
c

��� ���2 ¼ �2d0
b xj � x0

c

� �
� n x0

c

� �
ð4:30Þ
for xj 2 Bc, where d0
b is the sphere radius. Let
Xn;m;q
m;l ¼

X
xj2Bc

qj
1 þ iqj

2

� �m
qj

3

� �n�m
qjj jmþq

Y m;l xj � x0
c

� �
MSjQ xjð Þ; ð4:31Þ
with qj ¼ ðxj � x0
cÞ=d0

c and all indices being integer (0 6 m 6 n, jlj 6 m). It is easy to see that the single-layer
patch moments (4.13) are expressed via Xn;m;o

m;�l with n ¼ 0 and 1. So are the double-layer moments (4.16) �EðcÞm;l;k;s,
since nðxjÞ ¼ ðd0

c=d0
bÞqj þ nðx0

cÞ. The moments �D
ðcÞ
m;l;k can be expressed in terms of Xn;m;o

m;�l with n ¼ 1 and 2. Let
xq

m;l ¼ Xo;o;q
m;l , for brevity. Using (4.24) and (4.30), a recurrent relation can be derived for xq

m;l:
xqþ2
m;l ¼ �

d0
b

d0
c

 !
n1 x0

c

� �
� in2 x0

c

� �h i
f 1
m;lx

q
mþ1;lþ1 þ f 2

m;lx
q
m�1;lþ1

h in
þ n1 x0

c

� �
þ in2 x0

c

� �h i
f 3
m;lx

q
mþ1;l�1 þ f 4

m;lx
q
m�1;l�1

h i
þ 2n3 x0

c

� �
f 5
m;lx

q
mþ1;l þ f 6

m;lx
q
m�1;l

h io
ð4:32Þ
(assuming xq
m;l ¼ 0 for jlj > m). The values of x0

m;l are calculated directly by patch summation (4.31) for
0 6 l 6 m 6 k0 þ 1 and then x2

m;l and x4
m;l are found successively from (4.32); continuation to negative l is sim-

ply made by (4.11). Calculation of the necessary X-coefficients is performed by additional recurrent relations
following from (4.24) and (4.31):
Xnþ1;mþ1;q
m;l ¼ f 1

m;lX
n;m;q
mþ1;lþ1 þ f 2

m;lX
n;m;qþ2
m�1;lþ1;

Xnþ1;m;q
m;l ¼ f 5

m;lX
n;m;q
mþ1;l þ f 6

m;lX
n;m;qþ2
m�1;l : ð4:33Þ
Namely, Eq. (4.33) are first used with n ¼ m ¼ 0; q ¼ 2, to determine Xn;m;2
m;l for n ¼ 1 and m 6 n, then with

n ¼ 0 and 1, m 6 n, and q ¼ 0, to obtain the necessary Xn;m;0
m;l . Thus, instead of 13 scalar complex patch sums

in (4.13) and (4.16) for every m; l, there are only three sums ðx0
m;lÞk ðk ¼ 1; 2; 3Þ to calculate in the special case

of a patch Bc on a spherical solid surface; the total speedup in generating (4.22) is about three-fold (compared
to our new algorithm for an arbitrary solid surface), with optimized recurrent calculation of solid harmonics
for (4.13), (4.16), and (4.31).

4.3. Merging of singular expansions

Another element of our algorithm in Section 4.1 is the translation of Lamb’s singular series (4.2) for a patch
Bc � Sb to the new expansion center x0

b. In principle, general formulae of Sangani and Mo [11] for translation
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of Stokes singularities of arbitrary order could be applied for this purpose. We use an alternative approach,
however, based on rotational transformations of spherical harmonics, since it reduces the number of opera-
tions for one translation from Oðk4

0Þ to Oðk3
0Þ and also greatly simplifies the algebra (which is otherwise

involved [11]). Mathematically, the idea is similar to that first used in conductivity [18,19] and then hydrody-
namical multidrop [20–22] simulations when changing the expansion center (the difference, though, is that here
we deal with singular-to-singular, not singular-to-regular reexpansions). Namely, a temporary ‘‘axial” basis
ðx01; x02; x03Þ is introduced for patch Bc, with the x03-axis along the reexpansion vector Rbc ¼ x0

c � x0
b (Fig. 2).

The A-, B- and C-coefficients in (4.22) are rotationally transformed to the new basis by Wigner functions
(encountered in the quantum theory of angular momentum [36,37]), reexpansion to the new center x0

b is made
in the axial basis, and the new Lamb coefficients A0ðbÞ�ðmþ1Þ;m, B0ðbÞ�ðmþ1Þ;m, C0ðbÞ�ðmþ1Þ;m are rotationally transformed back
to the original basis (x1; x2; x3Þ. Each step of this three-step procedure (rotation + reexpansion + rotation) is
Oðk3

0Þ-intensive. The back rotation is needed to sum up contributions from all patches Bc � Sb and form the
cumulative Lamb series (4.3).

The computationally efficient schemes for rotational transformation were discussed in detail [18–20], so we
only need here to consider reexpansion from (4.2), (4.3) for one patch Bc in the axial basis, assuming that the

source Lamb coefficients AðcÞ�ðmþ1Þ;m, BðcÞ�ðmþ1Þ;m, CðcÞ�ðmþ1Þ;m have already been rotationally transformed, and the new

harmonics pðbÞ�ðmþ1Þ; UðbÞ�ðmþ1Þ, vðbÞ�ðmþ1Þ to be determined have the form
pðbÞ�ðmþ1Þ Rb

� �
¼
Xm

m¼�m

AðbÞ�ðmþ1Þ;m
d0

b

Rb

 !mþ1

Y m;m Rb

� �
;

UðbÞ�ðmþ1Þ Rb

� �
¼
Xm

m¼�m

BðbÞ�ðmþ1Þ;m
d0

b

Rb

 !mþ1

Y m;m Rb

� �
;

vðbÞ�ðmþ1Þ Rb

� �
¼
Xm

m¼�m

CðbÞ�ðmþ1Þ;m
d0

b

Rb

 !mþ1

Y m;m Rb

� �
ð4:34Þ
in the axial basis ðx01; x02; x03Þ; primes are omitted in the derivations below using the ðx01; x02; x03Þ basis.
We start from the translation formula for negative-order solid harmonics, which follows from the general-

ized addition theorem (e.g., Ref. [38]) and greatly simplifies in the axial basis, with splitting in the azimuthal
number m:
d0
c

Rc

 !mþ1

Y m;m Rc

� �
¼
X1
n¼m

Im
m;n

d0
b

q

 !nþ1

Y n;mðqÞ; ð4:35Þ
where
Im
m;n ¼

1

ðn� mÞ!
ð2mþ 1Þðn� mÞ!ðnþ mÞ!
ð2nþ 1Þðm� mÞ!ðmþ mÞ!


 �1=2 Rn�m
bc d0

c

� �mþ1

d0
b

� �nþ1
ð4:36Þ
and q ¼ Rb ¼ y� x0
b, for brevity. Coefficients AðbÞ�ðmþ1Þ;m are immediately derived from (4.35):
AðbÞ�ðnþ1Þ;m ¼
Xn

m¼jmj
Im
m;nAðcÞ�ðmþ1Þ;m: ð4:37Þ
For calculating BðbÞ�ðnþ1Þ;m, we dot the velocity (4.2) with q, using Rc ¼ q� Rbc:
X1
n¼0

ðnþ 1Þ
2ð2n� 1Þ q

2pðbÞ�ðnþ1Þ � ðnþ 1ÞUðbÞ�ðnþ1Þ


 �
¼
X1
m¼0

q
oUðcÞ�ðmþ1Þ

oq
� Rbc

X1
m¼1

ovðcÞ�ðmþ1Þ

ou

þ
X1
m¼1

ðmþ 1Þ
mð2m� 1Þ q2 � Rbcq3

� �
pðcÞ�ðmþ1Þ �

ðm� 2Þ
2mð2m� 1Þ q2 þ R2

bc � 2Rbcq3

� �
q

opðcÞ�ðmþ1Þ

oq

" #
; ð4:38Þ
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where q3 in the Cartesian component of q in the axial basis, and partial derivatives are taken in the spherical
coordinates ðq; h;uÞ associated with the axial Cartesian coordinate system centered at x0

b (u being the angle of
positive rotation about Rbc). Expanding the harmonics (4.22) in terms of q by (4.35) and using the last recur-
rent relation (4.24) for q3Y n;mðqÞ, one can derive from (4.38):
BðbÞ�ðnþ1Þ;m ¼
im
ðnþ 1ÞRbc

Xn

m¼jmj
Im
m;nCðcÞ�ðmþ1Þ;m þ

Xn

m¼jmj
Im
m;nBðcÞ�ðmþ1Þ;m þ

Rbcd
0
b

ðnþ 1Þ
ðn� mþ 1Þðnþ mþ 1Þ
ð2nþ 1Þð2nþ 3Þ


 �1=2

�
Xnþ1

m¼jmj

ðnþ 2Þðm� 2Þ þ ðmþ 1Þ½ �
mð2m� 1Þ Im

m;nþ1AðcÞ�ðmþ1Þ;m � R2
bc

Xn

m¼jmj

ðm� 2Þ
2mð2m� 1Þ I

m
m;nAðcÞ�ðmþ1Þ;m ð4:39Þ
(omitting m ¼ 0 for m ¼ 0). To calculate CðbÞ�ðnþ1Þ;m, we dot the curl of (4.2) with q. The curl for Lamb’s singular
series is conveniently provided by the general formula from Sangani and Mo [11]:
X1

m¼1

�mrvðcÞ�ðmþ1Þ �
1

m
Rc �rpðcÞ�ðmþ1Þ


 �
;

yielding
X1
n¼1

nðnþ 1ÞvðbÞ�ðnþ1Þ ¼ �
X1
m¼1

1

m
Rbc

opðcÞ�ðmþ1Þ

ou
þ mq

ovðcÞ�ðmþ1Þ

oq

" #
; ð4:40Þ
where, again, the partial derivatives are taken in the spherical coordinates associated with the axial Cartesian
coordinates centered at x0

b. Expanding the harmonics pðcÞ�ðmþ1Þ and vðcÞ�ðmþ1Þ in terms of q by (4.35), we arrive from
(4.40) at
CðbÞ�ðnþ1Þ;m ¼ �
imRbc

nðnþ 1Þ
Xn

m¼jmj

1

m
Im
m;nAðcÞ�ðmþ1Þ;m þ

Xn

m¼jmj

m
n

Im
m;nCðcÞ�ðmþ1Þ;m ð4:41Þ
(omitting m ¼ 0 for m ¼ 0). Instead of seven sums over m in (4.37), (4.39) and (4.41), only four independent
sums need to be calculated for each n and m, which can be seen from a recurrent relation
�Im
m;n ¼

Rbc

d0
b

ðn� mÞðnþ mÞð2n� 1Þ
2nþ 1


 �1=2 Im
m;n�1

m
� n

m
Im
m;n: ð4:42Þ
Together with rotational transformations, our algorithm for reexpansion from (4.2) to (4.3) for one patch in-
cludes only 	 7:3k3

0 double precision multiplications and takes 1:0� 10�8k3
0 seconds of CPU time.

4.4. Far-field calculations

The far-field contribution of surface Smin
b , i.e., the last sum in (4.6), is calculated by a special form of the

Taylor double series for s1ðxj � yÞ and/or G1ðxj � yÞ in powers of xj � x0;min
b and y� x0

a ¼ Ra. The necessary
formalism for this efficient, but somewhat cumbersome procedure has been already developed in our multi-
drop simulations [20–22] and only needs to be slightly adapted to the present problem. On every iteration,
a sufficient number of double-layer far-field moments
�DðbÞm;l;k;s ¼ ð�1Þm�1
X
xj2Sb

W ðs xjð ÞQkÞ xjð ÞZm;l xj � x0
b

� �
;

�EðbÞm;l;k;s;‘ ¼ ð�1Þm
X
xj2Sb

xj � x0
b

� �
‘
W ðs xjð ÞQkÞ xjð ÞZm;l xj � x0

b

� �
ð4:43Þ
and (in case of a solid particle Sb) single-layer far-field moments
DðbÞm;l;k ¼ ð�1Þm
X
xj2Sb

Zm;l xj � x0
b

� �
Qk xjð ÞMSj;

EðbÞm;l;k;‘ ¼ ð�1Þm
X
xj2Sb

Zm;l xj � x0
b

� �
Qk xjð Þ xj � x0

b

� �
‘
MSj ð4:44Þ
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are precalculated for all Sb (cf. with Eqs. (3.15), (3.73) of Ref. [20]); these coefficients are not to be confused
with E- and D-coefficients introduced in Section 4.2 for patches. For a spherical solid Sb (with x0

b being the
sphere center), only D

ðbÞ
m;l;k are calculated by summation (4.44). Indeed, due to WðxjÞ ¼ 2nðxjÞMSj,

nðxjÞ ¼ ðxj � x0
bÞ=d0

b and recurrent relations (4.24), other moments EðbÞm;l;k;s,
�D
ðbÞ
m;l;k;s and �EðbÞm;l;k;s;‘ are expressed

through D
ðbÞ
m�1;��� and D

ðbÞ
m�2;���, D

ðbÞ
m;���, respectively. Using the moments (4.44), the single-layer part of the far-field

contribution can be expressed in the coordinate form as
X
xj2Smin

b

Qk xjð ÞGk‘
1 xj � yð ÞMSj ¼

X1
n¼0

Xn

m¼�n
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m¼0
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l¼�m

DðbÞm;l;konþm;mþl Gk‘
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1 Rba

� �
; ð4:45Þ
where P1ðrÞ ¼ ðPð1Þ1 ;P
ð2Þ
1 ;P

ð3Þ
1 Þ is the vector of pressures for G1ðrÞ, and Rba ¼ x0

a � x0;min
b 2 ð�1=2; 1=2Þ3. Upon

appropriate transformation of moments �D
ðbÞ
m;l;k;s and �EðbÞm;l;k;s;‘ (similar to (4.19)), the double-layer part of the far-

field contribution takes a form analogous to (4.45) (see (A.2) of Ref. [22]) with the derivatives of G1 and P1

only, and the two forms are combined for a solid surface Sb. The cumulative far-field contribution from all b in
(4.6) is then combined with (4.8), before pointwise calculations are made for all y 2 Sa.

Efficient Ewald-like forms for the periodic Green tensor G and the corresponding vector of pressures P
follow from Hasimoto [27]:
PðxÞ ¼ �x� 1

p3=2

X
m

ðx�mÞ
Z 1

p1=2

e�t2ðx�mÞ2 t2dt � i
2p

X
m 6¼0

me�pm2�2pim�x

m2
;

GðxÞ ¼ I

4p
� 1

4p3=2

X
m

Z 1

p1=2

e�t2ðx�mÞ2 I þ 2t2ðx�mÞðx�mÞ
� �

dt

� 1

4p2

X
m 6¼0

I � pmm 1þ 1

pm2

� �
 �
e�pm2�2pim�x

m2
: ð4:46Þ
The far-field parts G1, P1 are obtained from (4.46) by replacing the upper integration limit in the physical-
space contributions by zero for jmj 6 m0 (which generalizeses Eq. (3.74) of Ref. [20] for arbitrary m0). These
expressions are employed to precalculate a large root table of om;l½Gk‘

1 ðrÞ � 1
2
P
ðkÞ
1 ðrÞr‘� and om;lP

ðkÞ
1 ðrÞ for

r ¼ ðn1h; n2h; n3hÞ, where the integers ni are in the range 0 6 n1 6 n2 6 N T , 0 6 n3 6 N T , the table step is
h ¼ 0:5=NT , and N T is typically 20; when necessary, the tabulated values are extended to the entire box
½�1=2; 1=2�3 by symmetry properties. In dynamical simulations, the derivatives in (4.45) at r ¼ Rba are calcu-
lated by Taylor expansions (of typically third order) from the nearest point of the extended table (see (3.81) of
Ref. [20]). With m0 P 2, the far-field expansions are fast convergent even for small systems, since d0

a,
d0

b � m0 þ 1, and, on average, maxðm; nÞ 6 4-5 in (4.45) suffices for the dynamical simulations in Section 6,
with the necessary order m of derivatives om;l in the table never exceeding 11. For more demanding high-pre-
cision tests, larger m 6 16 in the table were found to be sufficient. Calculation of the coefficients in the far-field
part of the cumulative series (4.45) for all Sa is Oðmaxðm; nÞ4ðeN þ bN Þ2)-intensive, but the numerical coefficient
is small and independent of surface discretization. In the present problem, with necessarily high resolution, the
total cost is instead greatly dominated by mesh-node operations, with approximately a linear scaling in the
total number of nodes.

4.5. Calculation of additional integrals

For spherical solid particles bSb (the only case considered in the numerical examples of Section 6), the sim-
plest and most efficient way to incorporate the analytical calculation of additional integrals (2.11) (with
q0ðxÞ ¼ hqib þX� ðx� x0

bÞ on bSb) into the scheme of Section 4.1 is through modification of multipole expan-
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sions. The root far-field moment (4.44) D
ðbÞ
m;l;k is modified by simply adding a continuous analog, where the

summation is replaced by integration, and Q replaced by q0, which limits modifications (for l P 0) by
DðbÞ0;0;k  DðbÞ0;0;k þ 4p d0
b

� �2

hqkib

DðbÞ1;0;1  DðbÞ1;0;1 �
4p
3

d0
b

� �4

X2; DðbÞ1;0;2  DðbÞ1;0;2 þ
4p
3

d0
b

� �4

X1

DðbÞ1;1;1  DðbÞ1;1;1 þ
2p
3

d0
b

� �4

X3i; DðbÞ1;1;2  DðbÞ1;1;2 �
2p
3

d0
b

� �4

X3

DðbÞ1;1;3  DðbÞ1;1;3 þ
2p
3

d0
b

� �4

X2 � iX1ð Þ: ð4:47Þ
The necessary changes are automatically propagated to other far-field moments EðbÞm;l;k;‘,
�D
ðbÞ
m;l;k;s, �EðbÞm;l;k;s;‘ if they

are expressed via modified DðbÞm;l;k (as discussed in Section 4.4). For free-space contributions, it can be shown
that
Z
bS b

q0ðxÞ � gG0ðx� yÞ þ 2s0ðx� yÞ � nðxÞ½ �dSx ¼ �
g d0

b

� �2

2
1þ 1

3

d0
b

Rb

 !2
24 35 hqib

Rb

8<:
þ 1�

d0
b
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 !2
24 35 hqib � RbRb

R3
b

9=;þ g d0
b

� �4

3

Rb �X

R3
b

þ IðyÞq0ðyÞ; Rb ¼ y� x0
b; ð4:48Þ
where IðyÞ ¼ 1 for y 2 bSb and IðyÞ ¼ 0 when jRbj > d0
b. Representing the single-layer part of (4.48) as Lamb’s

singular series yields solid harmonics p�2, U�2, v�2, which must be added to (4.34) to modify the coefficients:
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4p
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X3;
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g d0
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3

2p
3
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X1 � iX2ð Þ: ð4:49Þ
With modified coefficients (4.47) and (4.49), the whole scheme of Section 4.1 now accounts for additional inte-
grals (2.11) except for (a) self-interactions (bSa ¼ bSb ¼ bS min

b and m ¼ 0) and (b) when the free-space contribu-
tion of bSmin

b þm to (4.6) is handled as a sum from individual patches. In these two cases, the term (4.48) is
simply added directly, with Smin

b þm and x0;min
b þm replacing bSb and x0

b, respectively.

4.6. Economical truncation of multipole expansions

An essential part of our algorithm in Section 4.1 is the ‘‘economical truncation” of multipole expansions/
reexpansions depending on a single precision parameter, e� 1. Although there is considerable freedom in
constructing the truncation bounds, all efficient strategies must take into account that the convergence rate
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for Lamb’s series (4.2) and (4.3) strongly depends on d0
c=Rc < 1 or d0

b=Rb < 1, respectively. Likewise, the rate
of convergence of the far-field expansion (4.45) is mostly determined by the progression exponent
maxðd0

a; d
0
bÞ=fab, where fab ¼ min jRba �mj (over jmj > m0) is the minimal center-to-center distance between

the shell Da and the shells around the periodic images of Smin
b outside the near-field zone for Sa (see (4.5)).

An ad hoc choice of uniform truncation bounds for all the expansions/reexpansions would greatly reduce
the performance. On the other hand, rigorous majorants for multipole coefficients would not be most bene-
ficial either, greatly overestimating the actual truncation errors. Our previous papers [20–22] on multidrop
interactions offer a rational set of rules for the truncation bounds based on plausible arguments about the
behavior of multipole coefficients. The same techniques are adapted to the present problem, as outlined in
Appendix A. The differences from [20–22] are (i) a more general Green function partition (4.5) into the
near-field and far-field parts and (ii) an additional set of truncation bounds associated with the patch expan-
sions (4.2). Besides, surface partitioning into compact blocks through the slicing in Refs. [20–22] is disabled
here, so blocks therein correspond to entire surfaces in the present work. This approach, although inevitably
semi-empirical, leads to a truncation scheme depending on a single intuitive precision parameter, e. This pre-
cision parameter is not a deviation from a non-multipole solution (by standard summations) in a rigorous
sense, but does correlate with this deviation. As e! 0, all multipoles are eventually included (if unrestricted
by the threshold k0), which guarantees the convergence to the (much slower) non-multipole solution. Except
for the initial moment t ¼ 0, the truncation bounds are calculated on the first iteration only, since QðxjÞ from
the preceding time step provides a sufficient approximation for (A.2); the cost of truncation-bound calcula-
tions is negligible.
5. Additional features of the algorithm

5.1. Preiterative part of the boundary-integral calculations

Efficient calculation of the inhomogeneous term (2.6) FðyÞ also requires multipole acceleration. Note, how-
ever, that (i) only drop surfaces contribute to this term and (ii) FðyÞ is calculated outside the iterations. For
this reason, we did not seek maximum efficiency of multipole acceleration for FðyÞ and used a simplification of
the logical scheme of Section 4.1, without drop surface partitioning into patches (or blocks). Such a scheme
almost parallels our initial algorithm [20] for drop–drop interactions, with two major exceptions. First, the
Green function partition (4.5) into the near- and far-field parts herein is different. Second, an estimation of
the behavior of the multipole coefficients (e.g., ak � Cb=ðk þ 1Þ3 for small k) in the single-layer expansion
for (3.3),
X
xj2eS b

f xjð Þn xjð Þ � G xj � yð ÞMSj ¼
X1
k¼0

ak

d0
b

Rb

 !kþ1

; ð5:1Þ
is done differently [21] through invariants of the tensor
Tb ¼
X

xj2eS b

f xjð ÞMSjn xjð Þ xj � x0
b

� �
; ð5:2Þ
namely
Cb ¼
1

p d0
b

� �2
Tb � TT

b

��� ������ ���þ trTb

�� ��þ 3 Tb

�� ���� ��h i
; ð5:3Þ
which replaces (3.85) of Ref. [20] and was more successful in the present problem. In adapting the single-layer
truncation scheme from that paper, the same parameters enf ¼ 1 and eff ¼ 10 were used.

For spherical solid particles bSb, the added-back integrals in (3.9) and (3.13) allow for simple analytical
expressions [6]:
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Z
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ba2
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R
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RR
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 �
;Z

bS b
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4p
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R2
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R5
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5R5
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 �
; ð5:4Þ
where, for brevity, r ¼ x� y, R ¼ Rb ¼ y� x0
b and ba ¼ d0

b. The discrete parts of P and C in (3.9) and (3.13),
although independent of the iterative solution, would still be too expensive to calculate by direct summations
for all relevant combinations ðy;m; bÞ in drop–solid interactions, and so the use of multipole acceleration for
these terms was quite essential. Still assuming the spherical shape for bSb and substituting rj ¼ banðxjÞ � Rb into
(3.13), one can see that the calculation of the discrete parts of P and C is reduced to calculation of twelve
Stokes vector fields: (i) single- and double-layer parts (separately) of (4.4) with QðxjÞ ¼ ek (k ¼ 1; 2; 3) and
(ii) the double-layer part of (4.4) with QðxjÞ ¼ bankðxjÞe‘ (k 6 ‘). To expand each of these fields as a Lamb’s
singular series (4.3), we use the efficient technique of Section 4.2 (with Bc, x0

c , Rc and d0
c therein replaced by the

quantities for the whole surface: bSb, x0
b, Rb and d0

b, respectively). Specifically for the spherical shape, all nec-
essary single- and double-layer moments (analogous to those in (4.13) and (4.16)) can be expressed in terms of
X

xj2bSb

MSjY m;l xj � x0
b

� �
ð5:5Þ
by recurrent relations (4.24). For stationary meshes on solids bSb, the coefficients (5.5) are time-independent,
and they are precalculated before the entire simulation for all b and 0 6 l 6 m to a large order
m ¼ kðSÞ0 	 0:6bN 1=2

M (where bN M is the number of triangular elements on a solid surface). Lamb’s series (4.3) is
then generated dynamically (to save memory) for each of the 12 fields to order m 	 kðSÞ0 through (5.5) at a neg-
ligible cost, and converted to the more efficient form like (4.9). Pointwise calculations by these expansions are
expedited by the symmetry of P and C. The truncation bound mS on m for calculating the tensors Pðy�m; bÞ
and Cðy�m; bÞ in (3.11) by multipole expansions depends mostly on the clearance between y�m and bSb.
This bound is found semi-empirically from
X1
k¼mSþ1

�aðbÞk

d0
b

jy�m� x0
bj

 !kþ1

< 0:2e1; ð5:6Þ
using the coefficients (A.1), to make the truncation errors for P- and C-terms compatible with those for the
first term in (3.11); the tolerance e1 is the same as in (A.3), only Rba in the second occurrence is replaced by
x0

a � x0
b. Once mS > kðSÞ0 , direct summations (3.9) and (3.13) are more economical and used for Pðy�m; bÞ and

Cðy�m; bÞ instead of the expansions. This simple combined scheme was found to accelerate the calculation of
all necessary P- and C-coefficients for solid-to-drop contributions almost three-fold in our runs; surface par-
tition into patches is not advantageous in this part of the algorithm due to the complex, tensor character of P
and C.

When the meshes on all solid spherical particles are identical, to within translation and possible scaling
about the particle centers (in the case of polydispersity), the preiterative calculation of P and C for solid-
to-drop contributions can be further accelerated through tabulation. Indeed, in this case, Pðy; bÞ and
Cðy; bÞ are identical functions of y� x0

b for all b, to within similarity transformations. We used a large table
outside a test unit solid sphere (150 points in the radial direction and 20480 auxiliary mesh triangles on each
concentric sphere around the test one) to calculate the most time-consuming Cðy; bÞ in the range
1:1 < Rb=d0

b < 1:7 by linear and quadratic interpolations in the radial and tangential directions, respectively,
rather than using (3.13) dynamically. Outside the tabulation range and/or for Pðy; bÞ, calculations proceed as
described above. Such an approach additionally accelerates this part of the algorithm by about 1.5-fold, with-
out any appreciable loss of accuracy, and makes sense primarily for matching viscosities k ¼ 1, when the iter-
ative part is relatively fast (Section 5.4); with even larger tables, C could be also handled by interpolations,
except for Rb=d0

b 	 1. The tabulation approach, though, would be memory-prohibitive, if the meshes on solidsbSb were all different (in particular, adaptive to the random granular material geometry). We have found, how-
ever, adaptive meshes on solids to offer no advantage in the present calculations (Section 6).
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5.2. Mesh control

A familiar difficulty in 3D boundary-integral or front-tracking calculations for deformable drops is dynam-
ical surface-mesh degradation. Namely, if the mesh-nodes are advected simply with the interfacial (or normal)
velocity, internode distances become highly irregular in a short simulation time, invalidating the mesh. One
remedy, more traditional, is to restructure the mesh as needed, to maintain the quality of surface triangulation
by nodes addition/subtraction/reconnection (Unverdi and Tryggvason [39], Tryggvason et al. [40]). The most
elaborate version, widely used in drop breakup simulations, additionally incorporates adaptive mesh-node
redistribution to minimize a potential, spring-like ‘‘mesh energy” (Cristini et al. [24]).

A quite different approach, ‘‘passive mesh stabilization” [6,20–22,30,41] is a family of methods to prevent
mesh degradation not through topological changes but by adding a tangential field found globally for each
surface to minimize a ‘‘kinetic energy” of disordered mesh motion. The same non-adaptive version as for a
single drop squeezing through a finite cluster of particles [6] is employed herein. At any instant of time, the
vertex velocities V i ¼ dxi=dt on eS a to be used in the drop shape update are required to minimize
F ¼
X

xij

1

jjxijjj4
d

dt
jjxijjj2


 �2

þ 2
X
M

1

C2
M

dCM
dt

� �2

ð5:7Þ
under the constraints V i � nðxiÞ ¼ uðxiÞ � nðxiÞ, where the normal velocities in the RHS are provided by the
boundary-integral solution. The summations in (5.7) are over all mesh edges xij ¼ xj � xi (with i < j) between
directly connected nodes on eS a, and over all mesh triangles M on eS a, and CM ¼ SM=ða2 þ b2 þ c2Þ is the ‘‘com-
pactness” of triangle M with area SM and sides a; b; c. The first term (5.7) prevents the internode distances from
becoming irregular, while the second term resists mesh triangle collapse. The form (5.7) is expressed as a qua-
dratic function of the velocities V i and minimized by conjugate-gradient iterations [30], until F stabilizes with-
in a relative tolerance of 10�5. The resulting computational cost of ‘‘passive mesh stabilization” is negligible
compared to the rest of the code.

Compared to our other simulations [6,20–22], in the present problem for drops traveling through multiple
tight constrictions between solids, the trend for mesh degradation is more severe due to close drop–solid inter-
actions, even when the drops remain compact. For this reason, in the present problem, passive mesh stabil-
ization alone could not provide sufficient control over the drop meshes for the entire simulation, and it was
necessarily complemented by occasional ‘‘active” mesh-node redistribution (without topological changes to
the mesh), to keep drop triangulations reasonably uniform. Let xi

0 be the mesh-node positions on eS a prior
to redistribution. For each xi

0, a best paraboloid [30] locally fitting eS a around xi
0 is constructed. Iterations
xi
new ¼ xi � d

oE
oxi

ð5:8Þ
are then organized to minimize the ‘‘potential mesh energy”
E ¼
X

xij

1� ‘2

jjxijjj2

 !q

þ c
X
M

1

Cr
M

; ð5:9Þ
with empirical parameters q ¼ r ¼ 20, c ¼ 10�14–10�18. Here, ‘ ¼ ½4Sa=ðeN M ffiffiffi
3
p
Þ�1=2 is the ‘‘target” value of a

mesh edge jjxijjj for a hypothetical surface coverage by eN M equilateral triangles. For very gradual mesh tran-
sition, the displacement d is chosen as
0:001 min
i

Mxi

jjoE=oxijj

� �
; ð5:10Þ
where the minimum is over all mesh-nodes on the surface, and Mxi is the shortest distance from xi to its neigh-
bors. After each iteration (5.8), xi

new is placed on the best paraboloid for the nearest node xj
0 2 eS a to continue

the process; the positions xi
0 and the best paraboloids are not updated. Typically, from several thousand to

Oð10; 000Þ iterations are made; the maximum-to-minimum mesh edge ratio over the entire surface eS a is usually
minimized with a much smaller number of iterations, but additional iterations serve to improve the average
compactness of mesh triangles. The first, spring-type term in (5.9) is highly sensitive to the ‘‘tensions”
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jjxijjj � ‘ and is akin to (although different from) the potential mesh energy of Cristini et al. [24]. Although
there is some freedom in choosing a working combination ðq; r; cÞ, we have found it necessary, in the present
problem, to always include the second term in (5.9), with a very small weight, to prevent mesh triangle collapse
during minimizations (5.8) at the advanced stage of drop squeezing.

Mesh-node redistribution for a surface eS a was made whenever (i) the maximum-to-minimum mesh edge
ratio reached 5, or (ii) the minimum triangle compactness CM was below 0.05, or (iii) the maximum curvature
on eS a reached (20–30)ea�1 (ea being the non-deformed drop radius); the first criterion was dominant. The cur-
vature criterion, although necessary, was somewhat difficult to use, since it was unclear how to distinguish
between numerical and physical high curvature developments, and it would crash the simulation in exclusive
cases (probably, because node redistribution interferes with close drop–drop and drop–solid interactions). In
such instances, operations (5.8) were simply delayed to a later moment. Owing to passive mesh stabilization
greatly slowing down mesh degradation, node redistribution was needed extremely rarely, and for a few drops
only. In a simulation of Section 6, with 25 drops and 10,000 time steps, the frequency of this operation (com-
pared to the hypothetical, most unfavorable case, when node redistribution is done for all drops at all time
steps) was about 5� 10�5. As an alternative, we attempted advecting mesh-nodes with the interfacial velocity
u and using the node redistributions (5.8) as needed; the frequency of this operation was much higher
(� 0:005Þ, and such a solution could proceed to small times only, with much smaller time steps required
for stability and other difficulties. It is most beneficial, therefore, in the present problem to combine the
two strategies, passive mesh stabilization and active node redistribution through minimization of a potential
mesh energy.

The current version of our code does not incorporate topological mesh changes. It is perceived that the abil-
ity of drops traveling through tight pores of a dense granular material to stretch excessively and/or break
(where the topological changes would be unavoidable) is severely limited by geometrical constraints; a numer-
ical example in Section 6.1 confirms this viewpoint. The conditions for drop breakup in this problem, however,
may require further analysis.

5.3. Swelling technique for generating a start-up configuration

In the present problem of an emulsion flow through a granular material, an appropriate model for solid
particle arrangement would be a random packing in mechanical equilibrium (e.g., random ‘‘loose” or close
packing [42]) or, at least, a very dense unconsolidated packing. A thermodynamical, or thermodynamic-like
Monte-Carlo approach (e.g., [43–45]), with stochastic mixing and gradually swelling the particles, has been
widely used in the literature to numerically simulate unconsolidated packings of spheres and approach (with
fast densification rate) a random-close packing, which, mechanically, is the densest state that frictionless
spheres can be randomly packed into. An alternative, very different algorithm [46] offers a mechanical picture
[19] and can be extended for simulating ‘‘random-loose packing” of absolutely rigid spheres in mechanical
equilibrium, as the opposite case of high interparticle friction. Having generated a particle arrangement,

the next task is to add eN drops with centroids in a periodic cell ½0; 1Þ3 and prescribed volumes v1; . . . veN , as

a start-up configuration for dynamical boundary-integral (BI) simulation. Although the statistical steady state
results (Section 6) are expected to be independent of the initial conditions, generating a start-up drop arrange-
ment may present significant difficulties. One obvious way is to place drops first as spheres of tiny radius in the
available space between the solid particles and then subject the drop phase to stochastic mixing, with gradual
increase in the drop radii. In this manner, however, only low drop volume fractions cd ¼ v1 þ . . . veN can be

achieved without drop–solid and drop–drop overlapping, For example, adding 40 drops to a random packing
of 14 equisized solid spheres (at solid volume fraction cs ¼ 0:5), we could not go above cd ¼ 0:031 for mono-
disperse arrangements of spherical drops. It would be interesting to do BI simulations for much larger drop
volume fractions, when squeezing meets high resistance and requires large drop deformation. Expanding the
drops in the course of BI simulation, until the target volumes v1; . . . veN are reached, was found to be compu-

tationally very prohibitive. The drop start-up volume fraction could be increased somewhat, if we stochasti-
cally mix both particles and spherical drops, with gradual swelling of their radii. In the example above, only
cd ¼ 0:155 at cs ¼ 0:5 for monodisperse drop packings could be achieved through this procedure. More
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important, such a technique would be physically irrelevant; adequate simulation requires adding drops to the
existing material microstructure.

We have found it very helpful to have a special geometrical algorithm for preparing a start-up configuration
of smooth, deformed drops with a large enough volume fraction between solid particles. Once drops cannot be
expanded anymore as spheres during stochastic mixing (see above), the mixing is stopped and replaced by con-
tinuous, simultaneous expansion of all drop surfaces eS a with deformation, viewed as a ‘‘time-dependent” pro-
cess, with artificial time s. The normal ‘‘velocity” DnðyÞ of the surface expansion at y 2 eS a has a special form
DnðyÞ ¼
d0ðyÞ � d0

min

1þ cexp k2
1ðyÞ þ k2

2ðyÞ
� �

d0ðyÞ
: ð5:11Þ
Consider a ray RðyÞ ¼ fx : x ¼ yþ mnðyÞ; m > 0 arbitraryg, emanating from y 2 eS a in the direction of the out-
ward normal nðyÞ to eSa (Fig. 4). The quantity d0ðyÞ in (5.11) is simply the distance from y along RðyÞ to the
nearest intersection point of RðyÞ with another surface (solid or drop) including periodic images, d0

min is a pre-
scribed small parameter so that the local surface expansion at y asymptotically slows down, as d0ðyÞ reaches
d0

min. The smooth invariant k2
1 þ k2

2 is based on principal curvatures k1ðyÞ and k2ðyÞ of surface eS a at y, and
cexp > 0 is another empirical parameter. There may be sharp variations of d0ðyÞ along the surface eS a (Fig.
4). The additional term in the denominator of (5.11) is designed to smooth DnðyÞ, makes it independent of
d0ðyÞ for large d0ðyÞ and does not allow catastrophically high curvatures to develop in this swelling process;
cexp 6¼ 0 is essential for the success of this technique.

In numerical implementation, the swelling process is applied to mesh nodes y ¼ xi. Intersections of RðyÞ
with solids are handled analytically (which is the easiest for spheres, but can also be done for other shapes,
such as ellipsoids); intersections with other drop surfaces are approximated as intersections with flat mesh tri-
angles (Fig. 4). As in BI simulations (Section 6), the best paraboloid-spline method [20] is used to calculate
normals nðyÞ and curvatures k1ðyÞ, k2ðyÞ. An Euler scheme xi þ V iMs is employed to simultaneously update
all the nodes xi, with the ‘‘velocities” V i provided by passive mesh stabilization (5.7) under the constraints
V i � nðxiÞ ¼ DnðxiÞ; there is a Courant-like stability limitation on Ms, depending mostly on drop surface reso-
lutions. Once a drop volume overshoots the target value va, the drop is scaled back slightly about the surface
centroid ~xc

a to fit va and excluded from the swelling process, which greatly speeds up the final stage. Upon com-
pletion, d0

min provides an estimation of the minimum drop–solid/drop–drop gap in the start-up configuration.
In the present applications of this swelling algorithm to monodisperse arrangements of particles and drops,

we used d0
min ¼ 0:012ba and cexp ¼ 2ba, where ba is the solid particle radius; stable steps Ms were in the range of

0.005–0.01 for eN M ¼ 6000–8640 triangular elements per drop. In the numerical example above with 40 drops
and 14 solid spheres at cs ¼ 0:5, it took about 6000 steps Ms to expand the drop phase from cd ¼ 0:031 to
cd ¼ 0:2, requiring 8–15 h of CPU time, for eN ¼ 6000 and 8640, respectively, with a simple way of calculating
d0ðyÞ. An optimization of this stage would be hardly justified, since the boundary-integral simulations take
longer (Section 6). Passive mesh stabilization is used in the swelling algorithm to keep drop meshing almost
uniform. In the example above, the maximum-to-minimum mesh edge ratio over each surface eS a remained
Fig. 4. Sketch for the swelling algorithm to prepare a start-up configuration of drops between solid particles.
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within 2.16 (and much closer to unity for most drops); in contrast, when the mesh-nodes were simply advected
with the normal velocity (5.11), this ratio reached 17. Higher drop volume fractions (e.g., cd ¼ 0:25 at cs ¼ 0:5)
could be also achieved through the swelling algorithm, but those were too difficult for boundary-integral
simulations.

5.4. Miscellaneous

Traditional iterations by ‘‘successive substitutions” are divergent for the boundary-integral system (2.8),
(2.12), but successful solutions were obtained in the present work by an alternative, generalized minimal resid-
ual iterative scheme, GMRES(k). Typically, k ¼ 4 was sufficient and close to optimum in dynamical simula-
tions. In exclusive cases, a larger k, up to 7, was needed for convergence, especially at start-up, due to close
solid–solid contacts and the absence of a good initial approximation for ðq;wÞ. The code starts from k ¼ 4 and
automatically increases k by 1, if the maximum residual of the Eq. (2.12) over all mesh-nodes still exceeds a
prescribed portion (10�4 in Section 6) of the r.m.s. value of the solution ðq;wÞ over all surfaces after 25 iter-
ations. The converged solution from two preceding time steps was linearly extrapolated to provide an initial
approximation, except at start-up.

Unlike for pure drop systems, where the homoviscous case k ¼ 1 has been studied most extensively in the
literature to avoid boundary-integral iterations, the present problem for k ¼ 1 still requires an iterative solu-
tion. However, the iterations for qðxÞ on solids bS a are now decoupled. After the Hebeker density qðxÞ is found
by the iterative technique above, with the convergence control over solids bSa only (we used higher tolerance
10�5 in this special case), solid-to-drop contributions are calculated only once to get wðyÞ. This provides a
great boost in performance, if the number of drops eN exceeds (or is comparable to) the number of solidsbN . The decoupling between q and w, though, would not be possible had we chosen a constant flow rate instead
of the constant-pressure gradient formulation (2.9).

Dynamical smoothing at each time step (Eq. (5.2) of Zinchenko and Davis [20]), together with occasional
mesh-node redistribution (Subsection 5.2) helped to suppress artificial surface irregularities with abnormally
high curvature; the smoothing parameter eS (Ref. [20]) was very small (10�5) and found not to have any appre-
ciable effect on the global quantities of interest. The drop shapes were rescaled at each time step about the
drop centroids exc

a to keep the drop volumes constant. This common procedure is used to reduce the long-time
cumulative error, with a negligible effect in the limit of fine triangulations. As in [6], an empirical rule provided
a stable and economical time step (in dimensional form)
Mt ¼ KMt
le

r
min

i

Mxiea max jk1ðxiÞj; jk2ðxiÞj½ �

� 	
; ð5:12Þ
where the minimum is taken over all mesh-nodes xi on all drops, ea is the non-deformed radius of the drop
containing xi, and Mxi is the minimum distance from xi to its neighbors on the same surface; an empirical
parameter KMt was set to 	 7.4 in all calculations. Although most calculations (Section 6) were done by the
second-order Runge–Kutta time integration, we have found more recently that the simplest Euler scheme is
quite adequate in the present problem; the results for the drop ðUDÞ and the continuous ðUCÞ phase velocities
by the two schemes are barely distinguishable in the whole time range of simulations. The reason is that high
local curvatures developing in the drop squeezing process necessitate a very small time step (5.12) for stability,
which makes the time integration error far less than the triangulation effect.

If the problem was solved exactly, lubrication layers would prevent drop–solid and drop–drop contacts (in
the absence of singular molecular forces [47,48]). For flow-induced squeezing of a single drop through a tight
free-space cluster of two or three particles, it was possible to fully resolve lubrication and demonstrate that
there is, indeed, a drop–solid spacing about 1–2% of the solid particle radius during squeezing (Zinchenko
and Davis [6]). At subcritical conditions, when the drop is trapped in the constriction, a stationary gap (still
of the order of 0.01ba) was observed in our simulations (ibid.); the existence of the stationary solution with a
non-zero drop–solid spacing is due to the pumping mechanism of the external flow [49,50].

In the present simulations, though, for multiple drops traveling under a pressure gradient through a dense
granular material with tight constrictions, it is much harder to resolve lubrication, and is not possible to com-
pletely avoid drop–solid overlappings, even with superhigh surface resolution (Section 6.3); if untreated, these
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overlappings quickly break down the simulation due to divergence of iterations. A simple technique was used
to control drop–solid spacings. Let dðyÞ be the distance from y 2 eSa along the ray RðyÞ (Section 5.3) to the
nearest intersection point of RðyÞ with a solid, and dmin (not to confuse with d0

min from Section 5.3) be a small
prescribed tolerance. On each time step, after the boundary-integral solution, the drop mesh-nodes xi with
dðxiÞ < dmin are simply moved in the direction opposite to nðxiÞ to make dðxiÞ ¼ dmin. This ad hoc technique
(which worked substantially better than, say, an artificial repulsion with singular forces) is not a substitute for
an accurate numerical solution and was only successful in our problem when lubrication is ‘‘almost resolved”

and the trend for drop–solid overlapping is very weak. In our simulations with high resolution, the above geo-
metrical correction was needed, at each time step, only for an extremely small portion of the total number of
nodes on drops (Section 6.3). Even more important, in an appropriate range of small dmin and for conditions
not too close to critical for squeezing to occur, the global long-time quantities of interest (the continuous and
drop phase velocities) are practically insensitive to dmin (Section 6.3), which justifies the procedure for finite
deformations, when lubrication layers are not highly localized.

Drop–drop overlappings also occurred in our simulations, but we have found it best to leave them
untreated. The analysis in Section 6 shows that these overlappings involve only a very small portion of the
total number of nodes on drops and, on the average, remain tiny throughout the simulation, disappearing
as more triangles are used. The virtue of the variational approach (3.5)–(3.7) to near-singularity subtraction
in the double-layer drop contributions is that it leaves boundary-integral iterations convergent for slight drop–
drop overlapping and moderate k, thus allowing simulations to succeed. Again, though, for small deforma-
tions not considered here, close drop–drop interactions would be far more difficult to handle (Zinchenko
and Davis [23]), requiring resolution of small near-contact areas.

6. Numerical results

6.1. Drop squeezing through a cluster of four spheres

We first tested the free-space version of our multipole-accelerated code, when a single drop squeezes
through a tight cluster of four spheres of radius ba rigidly held in an infinite domain of fluid. The drop is freely
suspended in the flow u1, which is uniform away from the particles and normal to one of the cluster faces (Fig.
5); the drop non-deformed radius ea ¼ 0:5ba is considerably larger than the inner radii of the constrictions. The
physical formulation is the same as for two- and three particle constriction problems [6] but the new case, with
the drop passing two successive constrictions and changing the direction of motion (Fig. 6) is much harder to
simulate. As the drop squeezes through, it decelerates about 500 times in the middle of the cluster. High res-
olution (11.5 K triangular elements on the drop and 8.6 K elements on each solid surface) has allowed this
simulation to succeed without the artificial parameter dmin; the minimum drop–solid spacing reached
0:008ba during squeezing. Due to the small cluster size and the lack of periodic boundaries, computational
gains through multipole acceleration are not as dramatic in this case as for emulsion flow (Section 6.3), but
they are still quite significant. For an instantaneous configuration in the middle of the squeezing process
.
2.13

2.25
2.17

2.25
2.252.45

Fig. 5. Particle configuration for the simulation of drop squeezing through a cluster of four spheres. Numbers show center-to-center
distances between the spheres, relative to the sphere radius. The inward arrow is the direction of u1 and also shows the face through which
the drop enters the cluster, departing through the face shown by the outward arrow. The cluster orientation is the same as in Fig. 6.



Fig. 6. Snapshots of a single drop squeezing between four fixed spheres in free-space, at ea ¼ 0:5ba, leju1j=r ¼ 2:5, k ¼ 4; time is scaled
with ba=ju1j. At t ¼ 0, the drop was spherical, its center aiming at the center of the face shown by the inward arrow in Fig. 5 and at a
distance of 3ba from that face.
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(t ¼ 308), one boundary-integral iteration by the present code takes 2.9 s, which is four times faster than by the
non-multipole code [6]; the whole simulation took 4500 second-order RK steps.

As the drop leaves the cluster (Fig. 6), it starts elongating extremely fast and breakup is imminent in the
free-space (which the present mesh algorithm would not capture); the drop, however, remained compact dur-
ing squeezing. This observation appears to confirm our viewpoint (Section 5.2) that excessive elongation and
breakup of emulsion drops traveling through a dense granular material are severely limited by geometrical
constraints imposed by the solid particles in a broad range of parameters, except when drops are small com-
pared to the constriction size. With the added possibility of drop breakup, simulations of emulsion flow
through a random granular material (Section 6.3) would probably be of formidable difficulty.

6.2. Single-phase flow through periodic and random beds of spheres

Accurate multipole expansion solutions have been obtained in the literature for the pressure-driven Stokes
flow of a pure liquid (no drops) through periodic (Sangani and Acrivos [1], Zick and Homsy [2]) and random
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monodisperse (Ladd [3], Mo and Sangani [4]) arrays of fixed solid spheres. The results are usually represented
by the ratio F =F 0 of the (average) hydrodynamic force acting on a bed particle to the Stokes drag 6plebahui on
an isolated particle, where hui is the flow velocity averaged over the entire space (with the continuation u ¼ 0
inside the solids). Our code is also applicable in the absence of drops to calculate the same quantity
F =F 0 ¼ 2=½9csð1� csÞðUCÞ3� via the z-component of the non-dimensional continuous phase velocity UC (Sec-
tion 2), which provided very useful tests. In Table 1, our results for dense simple cubic arrays are compared
with those of Mo and Sangani [4]; at cs ¼ 0:45 and 0.5236, F =F 0 can be also extracted from a more general
multipole collocation solution of Chapman and Higdon [5], with a perfect match to Ref. [4]. As the numberbN M of mesh triangles on a solid in our solution is increased from 3840 to 24,000, excellent agreement with prior
results is achieved in the whole range of concentrations, up to the maximum packing cs ¼ p=6; for cs ¼ 0:5, the
deviation is only 0.24%.

We also calculated F =F 0 for random arrays at cs ¼ 0:45 by averaging over 30 configurations with bN ¼ 50
solid spheres in a periodic box and bN M ¼ 11; 520. The only difference from the standard Monte-Carlo method
[43] in preparing random configurations is that we did not allow spheres to come closer than 0:001ba during
stochastic mixing. This limitation is physically insignificant since there is no solid–solid lubrication in the
problem, but it improves the iterative convergence. Our average result hF =F 0i ¼ 28:46� 0:20 (67% confidence
level) is in excellent agreement with 28.6 for bN ¼ 16 from Ladd [3] and Mo and Sangani [4], and with 28.2 forbN ¼ 108 from Ladd [3]. Recalculation for several chosen configurations using higher resolution bN M ¼ 24; 000
suggests that our average value of 28.46 must be corrected by about +0.2 to eliminate the triangulation effect
(in this test, a less optimal value of g ¼ 1=ba was used), which is still in very good agreement with the published
results.

Previous solutions [1–5] for these permeability problems did not need particle meshing or a boundary-inte-
gral. Instead, the flow was represented by a sufficient (and modest) number of multipoles located at particle
centers, taking advantage of spherical shapes. This approach results in a superior global rate of convergence
for F =F 0 (compared to our boundary-integral method), and a natural question is whether it can be generalized
for drop squeezing problems, with meshing and boundary-integrals applied to drop surfaces only. We
explored this option for the problem of a single drop squeezing through a tight free-space cluster of three
spheres (successfully handled by the boundary-integral tools [6]) but found it to not work. Even with multi-
poles of order up to 100 retained, our dynamical simulations crashed when the drop just entered the constric-
tion; a strong trend for drop–solid overlapping could not be overcome even with the artificial geometrical
barrier dmin, leading to instability. It appears that the boundary-integral approach, with singularity distribu-
tions over a surface and subsequent integral desingularizations, provides much better control of the local error
than when the singularities are placed in particle centers. In our code, multipoles are used only to (very sub-
stantially) accelerate the performance, but the boundary-integral is the starting point, with necessary meshing
for both drops and particles.

The same observation explains why the Power-Miranda range completion for the double-layer (Section 2),
with an additional Stokeslet and Rotlet placed in the particle center, is less robust in drop squeezing problems
than is the Hebeker representation (used throughout this work) with force and torque effects distributed over
the particle surface.
Table 1
Non-dimensional drag F =F 0 on a solid sphere for a single-phase flow through simple cubic arrays

cs Present code (g ¼ 3=ba) Mo and Sangani [4]bN M ¼ 8640 11,520 24,000

0.4 21.15 21.17 21.20 21.24
0.45 27.92 27.97 28.03 28.09
0.5 36.72 36.80 36.91 37.00
0.5231 41.56 41.67 41.83 –
0.5236 – – – 42.1



Fig. 7. Snapshots of the emulsion squeezing through a random loosely-packed array of solid spheres, with Ca ¼ 0:75, k ¼ 4, cs ¼ 0:5,
cd ¼ 0:2, bN ¼ 9, eN ¼ 25, bN M ¼ 8640, eN M ¼ 6000, bM M ¼ eM M ¼ 20, e ¼ 3:9� 10�7, k0 ¼ 30, g ¼ 1=ba, second-order RK scheme. Time is
scaled with le=ðjhrpijbaÞ. In the last frame, the drop phase only is shown, together with the periodic box ½0; 1Þ3 and the direction of �hrpi,
common for all frames. Only the drops and solids with centroids in the extended box ½�1=2; 3=2�3 are shown.
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6.3. Emulsion flow through a random granular material

Returning to the general problem formulated in Section 2, Fig. 7 represents snapshots of a monodisperse
emulsion flow through a monodisperse granular material of spherical particles with cs ¼ 0:5 solid volume
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fraction, cd ¼ 0:2 overall drop volume fraction (or 40% of the void space between the particles), viscosity ratio
k ¼ 4, capillary number Ca ¼ jhrpijbaea=r ¼ 0:75, bN ¼ 9 solids and eN ¼ 25 drops with centroids in the peri-
odic cell ½0; 1Þ3, and high resolution (bN M ¼ 8640 and eN M ¼ 6000 triangular elements on each solid and drop,
respectively). In the last frame, the drop phase only is shown, together with the periodic box ½0; 1Þ3 and the
direction of �hrpi (common for all frames of Fig. 7). The stationary solid phase was first generated as a ‘‘ran-
dom-loose packing” of highly frictional particles with perfect contacts in mechanical equilibrium (against the
confining pressure, if applied) at cs ¼ 0:5098. The code for such physically realistic particle arrangements is a
generalization of the random-close packing algorithm of Zinchenko [46] and will be described elsewhere; for
the purposes of the present paper, just the particle centers in ½0; 1Þ3 are listed in Appendix B. The deviation of
cs ¼ 0:5098 from the experimental value of 0.555 for random-loose packings [51] is primarily a statistical fluc-
tuation for a small bN ¼ 9 system. The solid phase was then slightly diluted to cs ¼ 0:5 by shrinking the particle
radius, to make gaps of 0:013ba between former neighbors and alleviate iterative convergence difficulties for
a

b

Fig. 8. The (a) individual drop velocities and (b) corresponding r.m.s values of the normal velocity for three chosen drops from the
simulation shown in Fig. 7. The thin solid lines correspond to the drop shown in Fig. 9. The velocity scale is jhrpijba2=le.
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(Fig. 9). The whole run took about 10,000 second-order Runge–Kutta steps, with typically 9–10 boundary-
integral iterations on each half of the time step. A substantial number of iterations, even with the initial
approximation extrapolated from the preceding time steps, indicates that our time steps are not far from
the stability limit and could not be greatly increased.

Because of the large size and complexity of our multipole-accelerated code, it was important to provide an
additional validation of our calculations. To this end, the run in Fig. 7 was interrupted at t ¼ 129, to compare
our inhomogeneous term FðxiÞ (Eq. (2.6)), interfacial velocity uðxiÞ and Hebeker density qðxiÞ (after one iter-
ation, for simplicity) with the corresponding exact values FexðxiÞ, uexðxiÞ and qexðxiÞ (for the given configura-
tion and triangulation) calculated much simpler, using only direct summations in (3.3), (3.5), (3.8), (3.9), (3.11)
and (3.13). In the non-multipole scheme, periodic kernels G and �s were calculated by shifting the argument to
the box ½� 1

2
; 1

2
Þ3 and interpolating the smooth functions G � G0 and �s� �s0 from tables, which is now a stan-

dard approach (following Loewenberg and Hinch [52]); using quadratic interpolations and a large table size
(121� 121� 121 in ½� 1

2
; 1

2
Þ3) allowed us to avoid any appreciable error in this test. For spherical particles,

additional integrals (the last term in (2.11)) can be expressed via Gðxc
b � yÞ, rGðxc

b � yÞ and rPðxc
b � yÞ,

and they were calculated as such in the non-multipole scheme (cf. with Section 4.5 for the multipole code)
using high-order table interpolations. Following [20], three criteria are used to quantify the deviation between
F and Fex:
Table
The co
Fig. 7
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Here, the summation in a is over all surfaces (solid and drop); h. . . ia and h. . .i denote averaging over Sa and all
surfaces, respectively; d1 provides pointwise convergence control, while d3 is the integral measure of conver-
gence. The deviations diðu; uexÞ (i ¼ 1; 2; 3) are defined the same way through u and uex, using the drop surfaces
only in (6.1) and replacing bN þ eN by eN ; analogous for diðq; qexÞ, using solid surfaces only in (6.1) and replac-
ing bN þ eN by bN .

Table 2 demonstrates that all diðF;FexÞ, diðu; uexÞ and diðq; qexÞ tend to zero, as the precision parameter e
(Section 4.6) is tightened, which proves the convergence of our code to the direct summation code. The actual
relative errors di, though, should not be linked to this intuitive parameter e (the latter, in particular, does not
take the actual magnitude of the solution, with small non-dimensional velocities, into account). The CPU
times for our code to calculate F and to perform one boundary-integral iteration are also given in Table 2;
2
nvergence of the present solution ðF; u; qÞ to the standard summations solution ðFex; uex; qexÞ, as e! 0, for the snapshot t ¼ 129 of

3:9� 10�5 3:9� 10�6 3:9� 10�7 3:9� 10�8 3:9� 10�9

exÞ 1:3� 10�2 2:2� 10�3 2:5� 10�4 3:2� 10�5 3:2� 10�6

exÞ 4:6� 10�3 6:3� 10�4 8:2� 10�5 9:9� 10�6 1:2� 10�6

eexÞ 6:9� 10�4 1:1� 10�4 1:5� 10�5 2:0� 10�6 2:6� 10�7

ime ðFÞ 15.0 17.0 19.0 22.5 26.5

exÞ 2:9� 10�2 4:8� 10�3 5:8� 10�4 6:6� 10�5 7:3� 10�6

exÞ 1:8� 10�2 2:6� 10�3 3:3� 10�4 4:2� 10�5 4:9� 10�6

exÞ 2:5� 10�3 3:9� 10�4 5:6� 10�5 7:4� 10�6 9:5� 10�7

exÞ 4:2� 10�4 1:0� 10�4 9:7� 10�6 1:1� 10�6 1:2� 10�7

exÞ 3:0� 10�4 4:6� 10�5 6:2� 10�6 7:9� 10�7 9:9� 10�8

exÞ 4:8� 10�5 7:3� 10�6 1:0� 10�6 1:4� 10�7 1:9� 10�8

ime (one iter.) 20.0 24.5 30.0 37.5 46.5

PU times are in seconds for the present solution.
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these times are weakly sensitive to e and are two-orders of magnitude smaller than those by the impractically
slow direct summation code (29 min and 66 min for F and one iteration, respectively, even with the simplest,
linear interpolation for G � G0 and �s� �s0). In particular, for e ¼ 3:9� 10�7 used in dynamical simulation for
Fig. 7, we achieve 95-fold and 137-fold computational gains for F and the iteration time, respectively. Our
previous multipole-accelerated codes [20–22] developed for purely multidrop systems in a periodic box are
most efficient for large ensembles (eN � 102 � 103 drops) with moderate resolution (eN M � 1000), but the per-
formance of those codes significantly degrades or the codes are not applicable at all when the same total num-
ber of mesh-nodes are placed on a smaller (eN � 10) number of surfaces; likewise, increasing the drop volume
fraction has a degrading effect, since costly direct summations for close interactions have to be used more
often. For emulsion shear flow with k ¼ 3, cd ¼ 0:55, eN ¼ 100, eN M ¼ 1500 (a total of 75,200 mesh-nodes)
and actual precisions diðu; uexÞ comparable with those in the present Table 2 at e ¼ 3:9� 10�7, we observed
an 87-fold gain in the iteration speed over the standard summation method (use Table 3 of Zinchenko and
Davis [21] at e ¼ 3� 10�4a), which translates into the ‘‘efficiency factor” of 87=75; 200 ¼ 0:00116. In the pres-
ent simulation with e ¼ 3:9� 10�7, we observe a somewhat higher efficiency factor (0.00120) in the iteration
speedup, and for much less favorable conditions with a larger number of nodes (114,000 total) on 34 surfaces
only, and drops and solids together taking 70% of the total space. This efficiency is achieved owing to a more
general near- far-field partition (4.5), improved multipole techniques, an additional level of mesh-node decom-
position (into patches) and use of special geometrical properties of spherical solid shapes (Section 4). A notice-
able part (5 s) of our one iteration time in Table 2 is taken by the variational drop-to-solid and drop-to-drop
double-layer near-singularity subtractions (i.e., direct calculations of the RHS of (3.6)), but we have found the
simulations to not succeed with simpler alternatives. For e ¼ 3:9� 10�7, the total preiterative part takes about
64 s (19 s for F, 24 s for P- and C-tensors in the solid-to-drop near-singularity subtractions, and 20 s for pre-
calculating the matrices, e.g., (3.7), used in the drop double-layer singularity subtractions). Postiterative pas-
sive mesh stabilization requires only 6 s. These timings, measured at t ¼ 129, are typical of every half step in
the simulation of Fig. 7.

The geometrical barrier (Section 5.4) dmin ¼ 0:009ba was used in this simulation to prevent drop–solid over-
lapping, but the corresponding correction was needed for an extremely small portion of the total number of
drop mesh nodes (namely, for 17, 30, 10 and 23 nodes at t ¼ 64, 129, 193, and 257, respectively, out of the
75,050 nodes in total), so the lubrication is ‘‘almost resolved.” This numerical trend for overlapping, already
small, is sharply reduced by stepping up to higher resolution (bN M ¼ 11; 520, eN M ¼ 8640): only 7, 30, 9 and 3
nodes out of the total 	108,000 needed a correction at t ¼ 64, 129, 193 and 244, respectively. It is important to
stress that the high-order near-singularity subtraction in solid-to-drop double-layer contributions (Section 3)
is the crucial element in making the drop–solid overlapping trend so low in the present problem. When the run
in Fig. 7 was repeated with the c-terms in Eqs. (3.11) and (3.12) disabled (resorting them to the leading-order
subtraction), 500–600 nodes required a correction at every half of the time step for all t P 25. Moreover, by
t ¼ 112, the run without the high-order subtraction lost much global accuracy (for the continuous and drop
phase velocities) and became three times slower than the run in Fig. 7 (due to smaller time steps and/or larger
number of boundary-integral iterations) and could not proceed any further. It is imperative, therefore, to use
high-order subtraction in the present type of drop squeezing problems; the geometrical barrier dmin alone is not
a sufficient remedy.

Since the drop volume fraction in the space available between solids (40%, corresponding to cd ¼ 0:2) is
large enough, there are also close drop–drop interactions (Fig. 7) with a numerical trend for surface overlap-
ing, but we found it best to leave this issue without a remedy. The degree of drop–drop overlapping, though,
Table 3
Computational expenses (in seconds) for the multipole-accelerated boundary-integral solution of the emulsion flow problem at k ¼ 4,bN ¼ 9, eN ¼ 25, t ¼ 129, e ¼ 4� 10�7

bN M eN M Total number of modes Preiterative part (s) One boundary-integral iteration (s)

8640 6000 113,948 64 (1900) 30 (4100)
11,520 8640 159,908 111 (3860) 49 (7800)

The corresponding CPU times (accurate to a few percent) for the direct summation algorithm are given in parentheses.
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was systematically monitored in our calculations, which can be done rigorously on the approximation that
each drop surface is identified with a collection of flat mesh triangles. The indicator function
Fig. 10ea) for
I y; eSb

� �
¼ 1

4p

Z
eS b

r � nðxÞ
r3

dSx; r ¼ x� y ð6:2Þ
equals 0 and 1 for y outside and inside eSb, respectively. For flat triangulation, I is calculated exactly, since the
contribution of each mesh triangle M 2 eSb to the integral (6.2) is simply � the area of the spherical triangle [33]
formed by projecting M onto the unit sphere centered at y. For each of eN � ðeN M=2þ 2Þmesh-nodes y on drops
it is determined, through (6.2), whether y protrudes into another drop eSb (including periodic images) and, if it
does, we calculate the degree of overlapping, d�, as the minimum of node-to-node, node-to-face and node-to-
edge distances from y to the triangulated eSb. This procedure is applied at selected time moments, and the effi-
ciency is not an issue. Fig. 10 shows the dynamics of p� (the fraction of protruding mesh-nodes) and the
a

b

. The (a) portion of drop mesh-nodes protruding into another drop and (b) average overlap over the protruding nodes (relative to
the simulation shown in Fig. 7 (crosses), and for a similar higher resolution simulation bN M ¼ 11; 520, eN M ¼ 8640 (squares).
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average overlap hd�i (i.e., d� averaged over protruding nodes only) relative to the drop non-deformed radius ea
for the simulation in Fig. 7 and a similar higher resolution simulation. For bN M ¼ 8640, eN M ¼ 6000, there is
only about 2% of protruding nodes, with the average overlap hd�i 	 0:015ea at the advanced stage of drop
squeezing; for higher resolution (bN M ¼ 11; 520, eN M ¼ 8640), the average overlap decreases 2–2.5 times.

Fig. 11 shows the surface triangulation effects on the main quantities of interest – continuous ðU CÞ and
drop phase ðUDÞ velocities (in the z-direction) for the simulation in Fig. 7, and for higher resolutionbN M ¼ 11; 520, eN M ¼ 8640. The deviations between the two solutions for UC remain modest in the entire sim-
ulation range (Fig. 11a). For U D, the agreement is excellent up to t ¼ 116 (Fig. 11b), with only minor devia-
tions at larger times; the cruder solution (solid lines) is capable of capturing all the wiggles in U CðtÞ and UDðtÞ
correctly, as the drops squeeze through the material. Due to stochastic nature of the process, the long-time
behavior is inevitably sensitive to the details of numerical implementation; it is essential, though, that our solu-
tion retains accuracy in the time range practically sufficient for the statistically stationary regime to be
a

b

Fig. 11. The (a) continuous phase and (b) drop phase velocities in the z-direction for the simulation in Fig. 7 (solid lines) and for a similar
higher resolution simulation bN M ¼ 11; 520, eN M ¼ 8640 (dashed lines).





Fig. 13. The cumulative effect of the precision parameter on the continuous phase (the top two curves) and the drop phase (the bottom
two curves) velocities. Solid lines: simulation in Fig. 7 with e ¼ 3:9� 10�7. Dashed lines: the same run with e ¼ 3:9� 10�6.

Fig. 14. The initial and final snapshots of the emulsion squeezing through a random array of solid spheres at Ca ¼ 0:75, k ¼ 1, cs ¼ 0:5,
cd ¼ 0:2, bN ¼ 14, eN ¼ 40, bN M ¼ 11; 520, eN ¼ 8640, bM M ¼ 60, eM M ¼ 20, e ¼ 3:9� 10�7, k0 ¼ 35, g ¼ 1=ba, dmin ¼ 0:009ba, second-order
RK scheme.
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Computational expenses for this, and a similar lower resolution (bN M ¼ 8640, eN M ¼ 6000) run at t ¼ 116 are
summarized and compared to those by the direct summation algorithm in Table 4. Again, a non-multipole
approach would not be capable of dynamical simulations in the present problem.

Due to reduced lubrication, it is even more difficult for k ¼ 1 to completely avoid drop–drop overlapping
than for k ¼ 4. Again, however, the average overlap hd�i=ea over drop mesh nodes protruding into another
drop systematically reduces, albeit slowly, as more triangles are used (Table 5). Presumably, the present sim-
ulations would require much higher resolution to completely eliminate this artifact (in contrast, simpler prob-
lems of two-drop interactions in free-space at finite deformations need much less triangulations to avoid
overlapping [30]). The global dynamical quantities of interest (the continuous and drop phase velocities),



Fig. 15. Snapshots of the drop phase for the simulation in Fig. 14. The periodic box ½0; 1Þ3 and the direction of �hrpi (from right to left)
common for all frames (and for Fig. 14) are also shown.
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though, are well convergent with respect to triangulations (see below) and do not suffer appreciably from this
weak trend for drop–drop overlapping. Aggressive mesh adaption to better resolve lubrication (which can be
only achieved at the expense of global convergence and the time step) does not appear justified in the present
problem. Finally, we note that our drop–drop overlapping criterion is based on the indicator function (6.2)
neglecting the curvature of the elements and, hence, is approximate itself.



Table 5
The portion p� of drop mesh-nodes protruding into another drop and the average overlap hd�i=ea over the protruding nodes for the
simulation shown in Figs. 14 and 15, and for a similar lower resolution simulation bN M ¼ 8640, eN ¼ 6000

t bN M ¼ 8640, eN M ¼ 6000 bN M ¼ 11; 520, eN M ¼ 8640

p� hd�i=ea p� hd�i=ea
12.9 0.000 0.002 0.000 0.003
25.7 0.022 0.003 0.010 0.002
38.6 0.045 0.007 0.031 0.004
51.5 0.063 0.011 0.052 0.007
64.3 0.071 0.016 0.062 0.011
77.2 0.072 0.022 0.065 0.015
90.1 0.073 0.027 0.066 0.020
102.9 0.075 0.031 0.066 0.022
115.8 0.081 0.032 0.070 0.023
128.7 0.086 0.035 0.076 0.024
141.5 0.087 0.041 0.074 0.029
154.4 0.089 0.045 0.074 0.032
167.3 0.088 0.050 0.073 0.035
180.1 0.084 0.055 0.067 0.041
193.0 0.084 0.060 0.063 0.048

Table 4
Computational expenses (in seconds) for the multipole-accelerated boundary-integral solution of the emulsion flow problem at k ¼ 1,bN ¼ 14 eN ¼ 40, t ¼ 116, e ¼ 4� 10�7

bN M eN M Preiterative part (s) One Hebeker density iteration (s) Postiterative part (s)

8640 6000 80 (5090) 10 (1840) 25 (8300)
11,520 8640 136 (10,200) 13 (3160) 35 (15,600)

The corresponding CPU times for the direct summation algorithm are given in parentheses. For details, see the text.
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In this simulation, we could not proceed beyond t 	 193 due to difficulties with mesh-node redistribution
(through (5.8)) for one drop, experiencing fast elongation. It remains to be seen in future work if an improved
drop meshing algorithm would allow us to proceed further. The simulated time range, though, is sufficient for
the squeezing process to attain a statistical steady state, both for U CðtÞ and U DðtÞ. Fig. 16a and b presents the
continuous and drop phase velocities for the simulation in Figs. 14 and 15 (solid lines), and for the same
parameters with lower resolution bN M ¼ 8640, eN M ¼ 6000 (dashed lines). The deviation between the two solu-
tions for U CðtÞ is within 4% for the entire time range (Fig. 16a); presumably, accuracy could be improved with
a more optimal value of g ¼ 3=ba of the Hebeker parameter (cf. Table 1 for the single-phase flow). In contrast,
for the drop phase velocity (Fig. 16b), the convergence is excellent for all t 6 100 and remains good up to
t 	 145, faltering only at larger times – probably due to difficulties with drop mesh-node redistribution.
The effect of switching to the first-order time integration (not shown) is even much smaller than in Fig. 12
making, again, the more economical Euler scheme quite adequate for the problem; in retrospect, we have
found the same to be true for the simulations of a single drop squeezing through a finite cluster in Zinchenko
and Davis [6].

All the simulations so far in this subsection used an artificial parameter dmin ¼ 0:009ba to prevent numerical
drop–solid overlapping (Section 5.4), which may be questionable until the sensitivity of the solution to this
parameter is explored. The simulation in Figs. 14 and 15 were repeated for dmin ¼ 0:0045ba, with a remarkably
small effect on the continuous and drop phase velocities in almost the whole time range (Fig. 17a and b); the
maximum deviation between the two solutions is about 0.7% for UC and 1% for U D for t up to 170, with no
appreciable differences at t 6 70. In the simulation from Figs. 14 and 15 with dmin ¼ 0:009ba, only 37 drop
mesh-nodes (out of total 	 173; 000) needed the geometrical correction at t ¼ 116; for the simulation with



a

b

Fig. 16. The (a) continuous and (b) drop phase velocities (in the z-direction) for the simulation in Figs. 14 and 15 (solid lines) and for a
similar lower resolution run bN M ¼ 8640, eN M ¼ 6000 (dashed lines).
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dmin ¼ 0:0045ba, only 32 nodes required this correction at the same t ¼ 116. We note that our high resolution
runs ‘‘almost resolve” lubrication in the drop–solid near-contact areas; those very few nodes requiring the arti-
ficial correction do not have an appreciable effect on the overall squeezing process. The parameter dmin should
not be set arbitrarily small for efficiency reasons, since too close unresolved drop–solid interactions can
increase the local curvatures k1ðxiÞ, k2ðxiÞ (especially when drops leave constrictions) and the total number
of time steps by the stability criterion (5.12). For example, the solution for dmin ¼ 0:0045ba is 1.62 times more
expensive than for dmin ¼ 0:009ba. Besides, for the most challenging case of squeezing conditions close to crit-
ical not considered here, we expect the solution to be more sensitive to dmin, and even higher triangulations
would be required for adequate simulations.

Several physical trends in Figs. 11 and 16 are interesting to discuss. In a steady shear flow of an emulsion of
freely suspended deformable drops, a statistical steady state is always attained (leaving aside breakup condi-
tions at large Ca), which was simulated both for large and small systems [21,52]. In contrast, for sedimentation
of many deformable drops [20,22], there is no steady state even away from breakup conditions and the drops



a

b

Fig. 17. The effect of the geometrical barrier dmin on the (a) continuous and (b) drop phase velocities. Solid lines: simulation in Figs. 14 and
15 with dmin ¼ 0:009ba. Dashed lines: the same run with dmin ¼ 0:0045ba.
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cluster instead, which we attributed to the Koch–Shaqfeh [53] type of instability. Figs. 11 and 16 show that,
for the pressure-driven flow of freely suspended drops through a granular material, there is no clustering and a
well-defined statistical steady state is achieved. The approach to this state is surprisingly fast, after the drops
pass the constrictions just 1–2 times, on the average. The long-time average velocities hUCi and hU Di are not
very much different, but both are significantly smaller than the average continuous phase velocity for the
motion of a pure liquid with viscosity le through the same particle arrangement under the same pressure gra-
dient hrpi (2.9–3.2 times for the k ¼ 4 simulation, and 2.2–2.4 times for k ¼ 1). On the average, in the long-
time regime, the drops move slower than the continuous phase in the k ¼ 4 simulation, but faster than the
continuous phase for k ¼ 1. The latter case, although it looks unusual, finds an easy explanation: U C includes
volume averaging of the fluid velocity u outside the drops, with u 	 0 near the solid boundaries, and so
U C < UD is quite possible. A similar hydrodynamical phenomenon, when red cells move faster than the sur-
rounding plasma, is known for blood flows in capillaries [54]. As the conditions approach critical for squeezing
to occur in our problem, UD ! 0 is expected, but at present this case would be extremely difficult to simulate
for multidrop-multiparticle systems.
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Despite dramatic gains over the standard boundary-integral method achieved in our code through multi-
pole acceleration, overall the calculations are expensive, due to inevitable high surface resolution, the very
large number of time steps, and an iterative solution at each step. For example, the simulation for the param-
eters in Fig. 7 even by the most economical Euler scheme took about 40 days on a single processor of AMD
PC, with Opteron 2.8 GHz CPU. For the k ¼ 1 case in Figs. 14 and 15, the Euler scheme integration took
about 23 days. Further progress will be made primarily by parallelizing the code.

7. Conclusions

A 3D algorithm has been implemented, for the first time, capable of modelling an emulsion flow through a
dense random granular material by direct multidrop-multiparticle simulations in a periodic box at low Rey-
nolds numbers. The algorithm incorporates recent boundary-integral desingularization tools developed for a
single deformable drop squeezing through a finite cluster [6], periodic Green function, Hebeker representation
for solid–particle contributions, unstructured surface triangulations with fixed topology, and multipole accel-
eration. Aside from dynamical simulations, our work also features a new ‘‘swelling” algorithm to prepare a
start-up configuration of deformed drops with sufficiently high volume fraction between solid particles. Com-
pared to our previous purely multidrop 3D simulations [20–22], the new problem is literally on the next level of
difficulty because of strong, lubrication-sensitive drop–solid interactions and high total volume fraction of
particles and drops. We found that the problem requires very high resolution (at least, NM � 104 boundary
elements per surface), a large (� 104) number of time steps, and an iterative solution (� 10 iterations) at each
step, to successfully simulate squeezing of drops comparable in size with the particles, with the practical goal
of the long-time pressure gradient-flow rate relationships for the continuous and drop phases. The multipole
acceleration part, with two levels of mesh-node decomposition, is an extension and improvement of our pre-
vious codes [20–22]. It now has no lower limitation on the system size, and remains efficient for high triangu-
lation (NM P Oð104Þ) and high total volume fractions. A two-orders of magnitude gain through multipole
acceleration over the standard boundary-integral coding has made the present simulations feasible. Also cru-
cial in the present work is the use of two non-standard desingularization tools – a variational technique for
drop double-layer integrals and high-order near-singularity subtraction in solid-to-drop double-layer contri-
butions. The former improves the spectral properties of the boundary-integral equations, allowing us to avoid
non-convergence of iterations, while the latter was found to greatly reduce the numerical trend for drop–solid
overlapping. The current version of our code is operational for spherial solid particles (mono- or polydis-
perse), but an extension to other canonic shapes (spheroidal or ellipsoidal) would be straightforward.

Using this code, we simulated the squeezing of 25–40 drops through a random array of 9–14 solid spheres
with NM 	 104 at 50% solid and 20% drop volume fractions and viscosity contrasts k ¼ 4 and 1. Relaxation to
a statistically steady flow regime is surprisingly fast, after drops pass the constrictions 1–2 times, on the aver-
age. For k ¼ 4 drops travel slower than the continuous phase, but the opposite was observed for k ¼ 1, on the
average in the long-time regime. Variation of program parameters (NM, etc.) and convergence tests prove the
correctness and accuracy of our simulations in a long-time range, sufficient for the statistically steady regime
to establish. In particular, there remains a very weak numerical trend for drop–solid overlapping, which we
have found impossible to eliminate altogether by increasing triangulations and which had to be contained
by an artificial geometrical barrier, but, most importantly, the global quantities of interest (continuous and
drop phase velocities) were found to be virtually independent of this procedure.

The present research can be further developed in several ways. We have recently applied the present algo-
rithm to study the special case of a periodic emulsion flowing through a packed cubic array of particles (one
drop and one particle per cell), where many more results can be obtained, including critical conditions for
squeezing to occur [55]. For random materials, when an emulsion squeezes with high resistance, it is still pos-
sible, due to geometry fluctuations, that some drops will experience very large deformations and even breakup,
while most drops remain compact. Such situations would require a more versatile drop meshing algorithm,
which presumably can be achieved by combining the present approach with topological mesh transformations
[24,39,40,56–58]. As for larger multidrop-multiparticle simulations, they are still very demanding despite dra-
matic gains achieved in our code through multipole acceleration, and we will seek further progress by paral-
lelizing the code.
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Appendix A. Details of economical truncation

For optimal values of the Hebeker parameter, g, single- and double-layer parts of the solid particle contri-
butions are equally important, so we base, for simplicity, the truncation bounds on the behavior of Lamb’s
series (4.3) for the double-layer part, estimated as [20]
X1

k¼1

�aðbÞk

d0
b

Rb

 !kþ1

; �aðbÞk ¼
�Cb=k2; k < kcr

�Cbk
.

k3
cr; k P kcr:

8<: ðA:1Þ
The low-k behavior of �aðkÞb models continuous distribution of stresslets over Sb (appropriate for fine triangu-
lations), while the ultimate asymptotics ðk !1Þ reflects the singularity of the actual discrete distribution
(4.4); the switch value kcr is determined semi-empirically by surface discretization [20]. The factor �Cb is esti-
mated as [20]
�Cb ¼
3
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with WðxjÞ defined in Subsection 4.2. The same relations (A.1) and (A.2) are used to estimate Lamb’s series
(4.3) for a drop Sb. For patch series (4.2), our estimations are analogous, with Sb and b replaced by Bc and c,
respectively, in (A.1) and (A.2).

When the shells Dmin
b þm and Da do not overlap, the truncation bounds mnf þ 1 and nnf þ 1 on m and n,

respectively, in the reexpansion from (4.3) to (4.7) are found from
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where �enf ¼ Oð1Þ is a numerical factor found empirically, and m ¼ 0 is excluded from the summation when
a ¼ bðRba ¼ 0Þ. Relations (A.3) modify (3.87) and (3.88) of Ref. [20], but otherwise the technique for finding
mnf and nnf (described by Eqs. (3.88)–(3.89) therein) is the same. The form (A.3) is designed to make the sum of
the omitted near-field contributions from all b and jmj 6 m0 less than �enf e.

If jRba �mj < d0
a þ d0

b, or nnf > k0, or mnf > k0, then Smin
b þm, by definition, is ‘‘not sufficiently separated”

from Sa, and the reexpansion from (4.3) to (4.7) is not used. Instead (assuming Sa 6¼ Smin
b þmÞ, a truncation

bound m
nf þ 1 on m for direct calculation of Lamb’s series (4.3) (with Rb  y� x0;min
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In turn, if m
nf > k0, or jRbj < d0
b, cumulative Lamb’s series (4.3) is not used. Instead, we consider contributions

(4.1) from individual patches on Smin
b þm and find a truncation bound m

nf þ 1 on m for each of Lamb’s series
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the summation in the RHS being over all patches Bc � Sb. Further choice between using Lamb’s series (4.2)
(truncated at m ¼ m

nf ) or direct summation (4.1) (with y y�mab �m) depends on the condition m

nf 6 k0 and
comparison of the number of operations in (4.9) and (4.1). For the special case of ‘‘self-interactions”

(Sa ¼ Sb ¼ Smin
b , and m ¼ 0), our multipole operations also include reexpansion from a singular Lamb series

(4.2) for a patch Bc � Sa to a regular form around Bd � Sa. The corresponding bounds mnf and nnf on m and n

for each pair (Bc, Bd) with Rdc ¼ jx0
c � x0

dj > d0
c þ d0

b are calculated from
Table
The (x

Particl

1
2
3
4
5
6
7
8
9

X
n;k:n>nnf or k>mnf

�aðcÞk

ðk þ nÞ! d0
d

� �n
d0

c

� �kþ1

Rnþkþ1
dc

< 10e2;

e2 ¼
X

c

1

R2
dc

" #�1
�enf e

R2
dc

: ðA:6Þ
The summation in (A.6) is over all patches Bc � Sa, c 6¼ d. If nnf > k0, or mnf > k0, or Rdc < d0
c þ d0

b, then, by
definition, Bc is not ‘‘sufficiently separated” from Bd and, instead of singular-to-regular reexpansion, we con-
sider bounds m
nf þ 1 on m for direct calculation of Lamb’s series (4.2) at y 2 Bd, jRcj > d0

c , determined from
X1
k¼m

nfþ1

�aðcÞk

d0
c

Rc

 !kþ1

<
e2

2
: ðA:7Þ
Once m

nf > k0, or jRcj < d0
c , or (4.9) is not advantageous (m

nf > 1:5jBcj1=2), direct summation (4.1) is used

instead.
For far-field expansion (4.45), fast convergent at m0 P 2, careful construction of truncation bounds is less

important. The minimum requirement is to always retain terms with nþ m 6 2, so that the truncation effect
can be represented as an absolutely-convergent series, as if Sa were interacting in free-space with all periodic
replicas Smin

b þm of Sb in the far-field zone ðjmj > m0Þ. The far-field bounds on m, n and nþ m are constructed
by adapting Eqs. (3.93)–(3.97) from Ref. [20] with m 6¼ 0 replaced by jmj > m0; unlike in that paper, with the
present approach far-field self-interaction (Rba ¼ 0) does not require a separate treatment. The parameters eeff

(Ref. [20]) for the far-field and �enf (above) for near-field truncations were set to 10 and 0.2, respectively, in the
present calculations. With �enf , eeff , k0 and m0 fixed, our truncation scheme for the iterative part depends on a
single intuitive precision parameter, e.

Appendix B. Solid particle configurations

For reproducibility purposes, below we list the solid–particle coordinates for the simulations of Section 6.
The initial drop arrangements (prior to mixing and swelling) are not given, since they had a weak effect on the
boundary-integral simulations.

See Appendix Tables 6 and 7
6
; y; z) coordinates of the particle centers in ½0; 1Þ3 for the simulation shown in Fig. 7

e number x y z

0.3243874 0.7011747 0.4686981
0.0037587 0.5376121 0.8459543
0.8087956 0.9205165 0.3737008
0.0348363 0.3276157 0.2725578
0.4361551 0.5143805 0.0448221
0.2437784 0.1659034 0.6691010
0.1773149 0.9197166 0.0716289
0.6635986 0.8706258 0.8247929
0.6584930 0.3742273 0.5610833



Table 7
The ðx; y; zÞ coordinates of the particle centers in ½0; 1Þ3 for the simulation shown in Figs. 14 and 15

Particle number x y z

1 0.9494136 0.2078018 0.0926014
2 0.8056486 0.3315064 0.6724226
3 0.0615986 0.6598202 0.5259929
4 0.2566758 0.8913835 0.1755777
5 0.1306606 0.0926785 0.5496345
6 0.3959172 0.3806419 0.6850131
7 0.5416411 0.0828344 0.4292147
8 0.1190271 0.5788258 0.9378737
9 0.6070422 0.6600754 0.4329414
10 0.3894115 0.8368537 0.7521064
11 0.5386848 0.1437762 0.9916194
12 0.6538206 0.6043917 0.9808043
13 0.8513389 0.9239146 0.8112634
14 0.3216490 0.4072113 0.2634067
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